Abstract:
An ion guide is disclosed comprising a plurality of electrodes. A first device is arranged and adapted to apply a RF voltage to at least some of the electrodes in order to form, in use, a pseudo-potential well which acts to confine ions in a first direction within the ion guide. A second device is arranged and adapted to apply a DC voltage to at least some of the electrodes in order to form, in use, a DC potential well which acts to confine ions in a second direction within the ion guide. A third device is arranged and adapted to cause ions having desired or undesired mass to charge ratios to be mass to charge ratio selectively ejected from the ion guide in the second direction.
Abstract:
A mass spectrometer for analyzing isotopic signatures, with at least one magnetic analyzer and optionally with an electric analyzer as well, with a first arrangement of ion detectors and/or ion passages and, arranged downstream thereof in the direction of the ion beam, a second arrangement of ion detectors, with at least one deflector in the region of the two arrangements of ion detectors or between these arrangements. Additionally, a multi-collector arrangement, special uses and a method for analyzing isotopes in a sample. The mass spectrometer according to the invention has a control for the at least one deflector such that ion beams of different isotopes can be routed to at least one ion detector in the second arrangement.
Abstract:
Mass spectrometer systems for measuring mass/charge ratios of analytes are described. A mass spectrometer system includes a vacuum flange, a PCB base plate coupled to the vacuum flange, and an ion optic assembly coupled to the PCB base plate. The PCB base plate may include signal-processing electronics. The system may include an electrical cable coupled to the PCB base plate for supplying power, control, and I/O to the ion optic assembly and the signal processing electronics. Alternatively, a mass spectrometer system includes a PCB base plate and an ion optic assembly. The PCB base plate has a sealant portion and an electrical portion. The ion optic assembly is coupled to the electrical portion. The system may include a vacuum housing for enclosing the ion optic assembly. The vacuum housing is coupled to the sealant portion of the PCB base plate for sustaining a vacuum while the system is in operation.
Abstract:
A method and apparatus is disclosed for electrostatic deflection and focusing of a charged particle stream. The apparatus can include plural vertical and horizontal deflection plates, although a single vertical and a single horizontal deflection plate each with a reference potential plane are preferred. Both orthogonal and preferably tilted display screens are employed to receive the deflected beam. The particle stream is injected offset from a centered position and the stream is deflected asymmetrically relative to the attracting deflection plate. Two alternately preferred computer programs are employable to calculate an offset position. A preferred external quadrupole is employed to correct any residual astigmatism in the particle stream. In one embodiment, the apparatus is disposed in a cathode ray tube. A reduced footprint CRT is also disclosed. Methods and apparatuses for an energy filtered electron beam, a mass spectrometer and a mass separator are also disclosed.
Abstract:
A multi-mass filter for separating particles of a multi-species plasma includes a chamber, which defines an axis. A radial electric field is crossed with a magnetic field (EnullB) to move the particles of different mass (M1, M2 and M3) on respective trajectories into respective first, second and third regions. Specifically, particles M1 are confined in the first region, while both particles M3 and M2 are ejected from the first region into the second region and only the particles M3 are ejected from the second region into the third region.
Abstract:
A method and apparatus is disclosed for electrostatic deflection and focusing of a charged particle stream. The apparatus can include plural vertical and horizontal deflection plates, although a single vertical and a single horizontal deflection plate each with a reference potential plane are preferred. Both orthogonal and preferably tilted display screens are employed to receive the deflected beam. The particle stream is injected offset from a centered position and the stream is deflected asymmetrically relative to the attracting deflection plate. Two alternately preferred computer programs are employable to calculate an offset position. A preferred external quadrupole is employed to correct any residual astigmatism in the particle stream. In one embodiment, the apparatus is disposed in a cathode ray tube. A reduced footprint CRT is also disclosed. Methods and apparatuses for an energy filtered electron beam, a mass spectrometer and a mass separator are also disclosed.
Abstract:
A mass spectrometer of the sector type which can be changed to an ionization manometer in which the ion collector current is a measure of the overall pressure of the gas to be analyzed utilizes a supply circuit for the system of accelerating electrodes in the ion source. The supply circuit provides the system of accelerating electrodes with a constant voltage or a pulsatory voltage in accordance with use as a mass spectrometer or an ionization manometer respectively.
Abstract:
The present invention relates to a compact and portable mass spectrometer device comprising a source of ions, a non-scanning magnetic sector for separating ions originating at the source of ions according to their mass-to-charge ratios, and a detection means. The magnetic sector comprises an ion entrance plane and at least two ion exit planes, which allow to optimize the resolving power of the mass spectrometer for specific mass-to charge ratio sub-ranges.
Abstract:
An ion source assembly for a static mass spectrometer, comprises: a mounting element for locating the assembly within the static mass spectrometer; an ion source for generating ions to be analyzed in the static mass spectrometer, the ion source being spaced from the mounting element and arranged to be held in use at a first relatively high potential V1 with respect to the mounting element; and a spacer mounted between the mounting element and the ion source, the spacer arranged to be held in use at a second potential V2 with respect to the mounting element, which is less than the first potential V1.
Abstract:
A mass spectrometer is disclosed comprising an Electron Transfer Dissociation device comprising an ion guide. A control system determines the degree of fragmentation and charge reduction of precursor ions within the ion guide and varies the speed at which ions are transmitted through the ion guide in order to optimize the fragmentation and charge reduction process.