Abstract:
An arrangement includes an optoelectronic component with two contacts; at least one further component part; at least one contact arranged between the optoelectronic component and the further component part; and at least one web arranged between the optoelectronic component and the further component part.
Abstract:
In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Abstract:
Magnetic field distribution and mutual capacitance control for transmission lines are provided. A first circuit board is fabricated by attaching a reference plane layer to a dielectric material layer, and attaching a first trace to the second surface of the dielectric material. A surface profile of the reference plane layer is modified to decrease a resistance of a return current signal path through the reference plane layer, to reduce a magnetic field coupling between the first trace and a second trace. A second circuit board is fabricated by attaching a reference plane layer to a dielectric material layer, attaching a trace to the dielectric material, and forming a solder mask layer on the dielectric material layer over the trace. An effective dielectric constant of the solder mask layer is modified to reduce or increase a mutual capacitance between the first trace and a second trace on the dielectric material.
Abstract:
A method of fabrication a circuit board structure comprising providing a circuit board main body, forming a molded, irregular plastic body having a non-plate type, stereo structure and at least one scraggy surface by encapsulating at least a portion of said circuit board main body with injection molded material, and forming a first three-dimensional circuit pattern on said molded, irregular plastic body thereby defining a three-dimensional circuit device.
Abstract:
A method of forming an asymmetrical encapsulant bead on a series of wire bonds electrically connecting a micro-electronic device to a series of conductors, the micro-electronic device having a planar active surface. The method has the steps of positioning the die and the wire bonds beneath an encapsulant jetter that jets drops of encapsulant on to the wire bonds, the drops of encapsulant following a vertical trajectory, tilting the die such that the active surface is inclined to the horizontal and, jetting the drops of encapsulant to form a bead of encapsulant material covering the series of wire bonds, the bead having a cross sectional profile that is asymmetrical about an axis parallel to a normal to the active surface.
Abstract:
A multilayer ceramic circuit board includes ceramic wiring layers which are stacked together, one or two or more lifting layers which have a planar shape and which are disposed as an inner layer inside the stacked ceramic wiring layers or as a lower layer lower than a bottom ceramic wiring layer, and a protruding portion formed on a surface of a top ceramic wiring layer due to the disposition of the one or two or more lifting layers. The protruding portion smoothly protrudes and has a large area and high flatness. The multilayer ceramic circuit board is formed by disposing lifting layers as an inner layer of a plurality green sheets or as a lower layer lower than a bottom green sheet, and firing under pressure the resulting laminate in a state constrained by an elastic constraining sheet and a rigid constraining sheet.
Abstract:
An image sensor module includes a circuit board, an image sensor, and a supporting board. The image sensor is electrically connected to the circuit board. The circuit board defines a through opening therein. The supporting board is arranged on one side of the circuit board and includes a protrusion. The protrusion extends outwardly from the supporting board and includes a square-shaped block no larger than the image sensor. The square-shaped block passes through the through opening. The image sensor is mounted on the block and spaced from the circuit board.
Abstract:
A circuit board with a simple structure is manufactured. A circuit board 19 has thereon a foil circuit 21 provided on a synthetic resin plate 20 formed by injection molding, made of a copper foil, and having a pattern different for circuit board 19. Anchor pins 20a projecting upward are provided on the resin plate 20 and passed through pinholes made in the foil circuit 21. The foil circuit 21 are positioned and secured to the resin plate 20. In a required portion of the resin plate 20, a terminal insertion hole 20c is provided, and receiving terminal 22 is secured to the required portion of the terminal insertion hole 20c and connected to the foil circuit 21.
Abstract:
There is provided a case structure having a conductive pattern and a method of manufacturing the same. A case structure having a conductive pattern according to an aspect of the invention includes a case having at least one via hole formed therein; at least conductive pattern formed on an outer surface of the case; and a conductive via formed within the via hole and electrically connecting the at least one conductive pattern to a board inside the case.
Abstract:
A semiconductor package and a fabrication method thereof are disclosed, whereby an environmental problem is solved by using external connection terminals or semiconductor element-mounting terminals containing a smaller amount of lead, while at the same time achieving a fine pitch of the terminals. The semiconductor package includes a board (20) including a plurality of insulating resin layers, semiconductor element-mounting terminals (18) formed on the uppermost surface of the board, and external connection terminals (12) formed on the bottom surface thereof. Each external connection terminal (12) is formed as a bump projected downward from the bottom surface of the package, and each bump is filled with the insulating resin (14) while the surface thereof is covered by a metal (16). Wiring 124), (26) including a conductor via (26a) electrically connect the metal of the metal layer 16 and the semiconductor element-mounting terminals (18).