Abstract:
An illumination assembly includes a compliant substrate comprising a first and second electrically conductive foil separated by an electrically insulating layer. The insulating layer includes a polymer material loaded with particles that enhance thermal conductivity of the insulating layer. A plurality of LED dies are disposed on the first conductive foil.
Abstract:
The present invention relates to stretchable interconnects which can be made in various geometric configurations, depending on the intended application. The stretchable interconnects can be formed of an electrically conducting film or an elastomer material to provide elastic properties in which the interconnects can be reversibly stretched in order to stretch and relax the elastomer material to its original configuration. Alternatively, stretchable interconnects can be formed of an electrically conducting film or a plastic material to provide stretching of the material to a stretched position and retaining the stretched configuration. The stretchable interconnect can be formed of a flat 2-dimensional conductive film covering an elastomeric or plastic substrate. When this structure is stretched in one or two dimensions, it retains electrical conduction in both dimensions. Alternatively, the stretchable and/or elastic interconnects can be formed of a film or stripe that is formed on an elastomeric or plastic substrate such that it is buckled randomly, or organized in waves with long-range periodicity. The buckling or waves can be induced by various techniques, including: release of built-in stress of the conductive film or conductive stripe; pre-stretching the substrate prior to the fabrication of the conductive film or conductive stripe; and patterning of the surface of the substrate prior to the fabrication of the metal film. The stretchable interconnect can be formed of a plurality of conductive films or conductive stripes embedded between a plurality of layers of a substrate formed of an elastomer or plastic.
Abstract:
A connecting structure of PCB using an anisotropic conductive film according to the present invention having members connected to each other by heat-compression using the anisotropic conductive film including an insulating adhesive as a base material and conductive particles dispersed in the insulating adhesive, wherein at least any one of the members has a flexible property, and a surface roughness value (Ra) of the member having a flexible property is 0.1 to 5.0 μm due to dents formed by heat-compression.
Abstract:
The present invention provides a motor that enables a lead of a coil to be appropriately led through holes, while allowing the lead of the coil to be fixed without contacting a wall surface of the hole in a base. Cuts 14b are formed in an insulating sheet or a printed circuit board 14; the cuts 14b extend substantially radially or spirally from a lead lead-out portion 14a as a center. Thus, even if an end of the lead 7a abuts against an area located outside the lead lead-out portion 14a, the abutting area and a nearby area located in the vicinity of the abutting area are pushed open along the cuts 14b extending from the lead lead-out portion 14a and guide the end of the lead 7a toward the lead lead-out portion 14a. The end of the lead 7a is thus appropriately guided into the lead lead-out portion 14a.
Abstract:
A printing surface includes a substrate having latching electrodes on a first surface, a spacer layer on the first surface of the substrate, the spacer layer patterned to form wells such that the latching electrodes reside in the wells, a deformable membrane, the membrane having conductive regions, on the spacer layer to enclose the wells, each enclosed well and its associated region of the membrane forming a pixel membrane, and actuation circuitry to actuate the electrodes to cause selected ones of the pixel membranes to remain in a deflected state when the pixel membranes receive an impulse to return to an undeflected state.
Abstract:
A circuit board for receiving and operably connecting a plurality of electrical components generally comprises: a flexible substrate of a predetermined length and having a first lateral edge and a second lateral edge; a conductive trace applied to the flexible substrate; and a plurality of integral tabs arrayed along the first lateral edge, one or more electrical components being operably connected to the conductive trace at a respective tab, and wherein each tab can be manipulated from a first position in which the tab is aligned with the remainder of the substrate to a second position in which the tab is oriented at an angle relative to the remainder of the substrate.
Abstract:
A conductive portion is formed in a hole formed in a material sheet. A metal foil is placed on a surface of the material sheet to provide a laminated sheet. The laminated sheet is heated and pressed to provide a circuit-forming board. The metal foil includes a pressure absorption portion and a hard portion adjacent to the pressure absorption portion. The pressure absorption portion has a thickness changing according to a pressure applied thereto. The circuit-forming board provided by this method provides a high-density circuit board of high quality having reliable electrical connection.
Abstract:
A circuit board with a simple structure is manufactured. A circuit board 19 has thereon a foil circuit 21 provided on a synthetic resin plate 20 formed by injection molding, made of a copper foil, and having a pattern different for circuit board 19. Anchor pins 20a projecting upward are provided on the resin plate 20 and passed through pinholes made in the foil circuit 21. The foil circuit 21 are positioned and secured to the resin plate 20. In a required portion of the resin plate 20, a terminal insertion hole 20c is provided, and receiving terminal 22 is secured to the required portion of the terminal insertion hole 20c and connected to the foil circuit 21.
Abstract:
There is provided a configuration in which rigid substrates are connected via flexible substrates, the connection configuration having a pair of rigid substrates each having a predetermined circuit pattern on a front and a reverse surface thereof, a first flexible substrate attached on the front surfaces of the pair of the rigid substrates so as to electrically connect the circuit patterns provided respectively on the front surfaces, a second flexible substrate attached on the reverse surfaces of the pair of the rigid substrates so as to electrically connect the circuit patterns provided respectively on the reverse surfaces. The first and the second substrate have a gap therebetween smaller than a thickness of the pair of the rigid substrates.
Abstract:
The present invention relates to a capacitor-embedded PCB and a method of manufacturing the same. The capacitor-embedded PCB includes a dielectric layer, a lower electrode layer formed under the dielectric layer, and an upper electrode layer formed on the dielectric layer and configured to have at least one first blind via hole that is inwardly formed.