Abstract:
A method of producing a chip embedded substrate is disclosed. This method comprises a first step of mounting a semiconductor chip on a first substrate on which a first wiring is formed; and a second step of joining the first substrate with a second substrate on which a second wiring is formed. In the second step, the semiconductor chip is encapsulated between the first substrate and the second substrate and electrical connection is made between the first wiring and the second wiring so as to form multilayered wirings connected to the semiconductor chip.
Abstract:
A power device embedded printed circuit board (PCB) assembly includes a cold plate, a multi-layer PCB with at least one power device embedded therein bonded to and in thermal communication with the cold plate, and a chemical vapor deposition (CVD) dielectric layer disposed between the cold plate and the multi-layer PCB. The CVD dielectric layer can be applied to the cold plate and a bonding layer can be sandwiched between the CVD dielectric layer and the multi-layer PCB with at least one power device assembly embedded therein. In the alternative, CVD dielectric layer can be applied top the multi-layer PCB with at least one power device assembly embedded therein and bonding layer can be sandwiched between the CVD dielectric layer and the cold plate.
Abstract:
In an embodiment a carrier structure includes at least one conductor structure configured for electrically contacting electrical components, wherein the conductor structure includes a plurality of conductor bodies, wherein at least some of the conductor bodies are in direct contact with electrically conductive first connectors, and wherein the conductor structure includes the conductor bodies and the first connectors.
Abstract:
An electrode structure on a circuit board, the electrode structure comprising a metal structure disposed on and electrically connected to the circuit board, wherein the metal structure and a surface of the circuit board forms a space therebetween, wherein at least one first electrical component is disposed in the space and an outer surface of the metal structure forms an electrode for electrically connecting with an external component.
Abstract:
A printed circuit board including an electronic component and a method of producing the same are provided. The printed circuit board includes a multilayered substrate including an insulation layer and an inner circuit layer laminated therein, a cavity disposed in the multilayered substrate, a via disposed in the insulation layer and configured to electrically connect the inner circuit layer with another inner circuit layer, a first electronic component inserted in the cavity, and a bump pad disposed on a surface of the cavity facing the first electronic component, and the bump pad is formed by having the insulation layer and the via exposed to a lateral side of the cavity.
Abstract:
An electronic part embedded substrate is disclosed. The electronic part embedded substrate includes a first substrate, a second substrate, an electronic part, an electrically connecting member, and a sealing member. A method of producing an electronic part embedded substrate is also disclosed. The method includes mounting an electronic part onto a first substrate, laminating a second substrate on the first substrate through an electrically connecting member; and filling a space between the first substrate and the second substrate with a sealing member to seal the electronic part.
Abstract:
An electronic part embedded substrate is disclosed. The electronic part embedded substrate includes a first substrate, a second substrate, an electronic part, an electrically connecting member, and a sealing member. A method of producing an electronic part embedded substrate is also disclosed. The method includes mounting an electronic part onto a first substrate, laminating a second substrate on the first substrate through an electrically connecting member; and filling a space between the first substrate and the second substrate with a sealing member to seal the electronic part.
Abstract:
A printed circuit board including an electronic component and a method of producing the same are provided. The printed circuit board includes a multilayered substrate including an insulation layer and an inner circuit layer laminated therein, a cavity disposed in the multilayered substrate, a via disposed in the insulation layer and configured to electrically connect the inner circuit layer with another inner circuit layer, a first electronic component inserted in the cavity, and a bump pad disposed on a surface of the cavity facing the first electronic component, and the bump pad is formed by having the insulation layer and the via exposed to a lateral side of the cavity.
Abstract:
A mounting structure for an electronic component and a method for mounting the electronic component are provided with a sufficient reinforcing effect for the relatively tall electronic component raised from a substrate. The mounting structure and the mounting method can easily respond to a change of the shape of the electronic component. In a mounting structure 1, a substrate 2 and an electronic component 4 raised on the substrate 2 are joined with bonding metal 3 and a reinforcing resin body 5 is bonded to the substrate 2 and the electronic component 4. The reinforcing resin body 5 includes a plurality of reinforcing resin layers 5a. The reinforcing resin layers 5a constituting the reinforcing resin body 5 are stacked in the height direction of the raised electronic component 4 along a side 4a of the electronic component 4 so as to be raised from the substrate 2.
Abstract:
A method of producing a chip embedded substrate is disclosed. This method comprises a first step of mounting a semiconductor chip on a first substrate on which a first wiring is formed; and a second step of joining the first substrate with a second substrate on which a second wiring is formed. In the second step, the semiconductor chip is encapsulated between the first substrate and the second substrate and electrical connection is made between the first wiring and the second wiring so as to form multilayered wirings connected to the semiconductor chip.