Abstract:
A vehicle accessory control component includes a first circuit board substrate and a second circuit board substrate. The first circuit board substrate has a plurality of circuit elements and an overall perimeter shape including an outer edge profile and a plurality of first deviations along the outer edge profile. The second circuit board substrate has a plurality of circuit elements an outer edge profile and a plurality of second deviations along the outer edge profile, at least one of the second deviations being different than the first deviations. The first circuit board substrate and the second circuit board substrate are arranged in a plane and selectively movable relative to each other to form the overall perimeter shape of the substrate. The outer edge profile of the first and second circuit board substrates are received in a housing having a correspondingly shaped perimeter that generally conforms to the outer edge profile.
Abstract:
An illustrative inventory of vehicle accessory control components includes a plurality of first circuit boards and a plurality of second circuit boards. The first circuit boards each have a substrate with a plurality of circuit elements supported on the substrate. The first circuit board substrates have an overall perimeter shape including an outer edge profile and a plurality of first deviations from the outer edge profile. The second circuit boards each have a substrate with a plurality of circuit elements supported on them. The second circuit board substrates have the overall perimeter shape including the same outer edge profile as the first circuit board substrates. The second circuit board substrates include a plurality of second deviations from the outer edge profile. At least one portion of the second deviations is different than the first deviations of the first circuit boards.
Abstract:
A power tool with a combined printed circuit board (PCB) that reduces internal wiring of the power tool and provides a large amount of air flow to internal components. In some instances, the combined PCB has a surfboard shape and includes a motor control unit and power switching elements (Field Effect Transistors or FETs). The combined surfboard PCB is located above the trigger, but below the motor and drive mechanism. In other instances, the combined PCB has a doughnut shape and is located coaxially with a motor shaft. The combined PCB may be positioned between a doughnut-shaped control PCB and the motor.
Abstract:
In a first aspect of the present disclosure, a push switch includes a substrate including a first electrode and a second electrode that are arranged on an upper surface of the substrate; a resilient member arranged on the first electrode over the second electrode of the substrate; and a light-transmitting member including a crosslinked product of a chain olefin-cyclic olefin copolymer. The light-transmitting member covers the resilient member from above and includes an upper surface, a lower surface, a peripheral side surface between edges of the upper surface and edges of the lower surface of the light-transmitting member, and a periphery of the lower surface of the light-transmitting member. The periphery may be fixed on the substrate.
Abstract:
A flexible board includes: a base film, on which a wiring pattern is formed; a first cover film, which is located on one surface of the base film; and a second cover film, which is located on the other surface of the base film. The bending portion, which is bent when mounting the flexible board on an electronic apparatus, includes both edges on which the first cover film is formed and a central portion from which the base film is exposed.
Abstract:
A cover panel made of sapphire is provided on a surface of an electronic apparatus. The cover panel includes a first surface and a second surface opposite to the first surface. An operation button is positioned in a hole provided in the cover panel. A case supports the second surface of the cover panel. The case supports and covers an edge of the hole of the second surface.
Abstract:
Control panels with antimicrobial copper sheet overlays are disclosed. In some embodiments, the antimicrobial copper used in the copper sheet overlays can be selected from copper or copper alloys containing from about 60 to about 100 wt % copper. In other embodiments, the copper sheet overlays have one or more deflection spots to permit an operator to use the control panel to operate an electronic device. Some embodiments include methods to manufacture the control panels comprising antimicrobial copper sheet overlays. Further embodiments include methods for operating an electronic device using the control panels comprising antimicrobial copper sheet overlays.
Abstract:
A device includes a circuit board, a plastic case accommodating the circuit board therein, the plastic case protecting the circuit board, and a plurality of conductive support members supporting the circuit board such that the circuit board is fixed to the plastic case. In the device, the conductive support members are fixed to the circuit board inside the plastic case, and extend to the outside of the plastic case to be fixed to the plastic case.
Abstract:
An electronic device may have circuitry mounted on a printed circuit board. The circuitry may include electronic components such as integrated circuits, sensors, and switches that are sensitive to bending-induced stress in the printed circuit board. An overmolded plastic stress concentrator may be overmolded over the printed circuit board and the circuitry on the printed circuit board. A flexible plastic body may be used to enclose the stress concentrator and printed circuit board. The plastic body, stress concentrator, and printed circuit board may be elongated along a longitudinal axis. The stress concentrator may have unbent regions in which the printed circuit board is prevented from flexing and enhanced flexibility regions. Sensitive circuitry may be located in the unbent regions to prevent the sensitive circuitry from being exposed to bending stress.