Abstract:
A method of manufacturing a thin support package structure includes the steps of: preparing a support plate formed with a plurality of grooves adjacent to an outer rim thereof, forming a releasing material layer on the support plate; forming a first circuit layer on the releasing material layer so as to form a thin circuit board; forming a dielectric layer on the releasing material layer; forming a plurality of openings in the dielectric layer; forming a second circuit layer on the dielectric layer; forming connection plugs by filling the openings; forming a solder mask on the dielectric layer; forming a plurality of notches on the lower surface of the support plate to communicate with the grooves, respectively; and removing the central part of the support plate between the notches and the central part of the releasing material on the support plate.
Abstract:
Disclosed is a method of packaging a chip and a substrate, including the steps of forming a substrate with a thickness ranging from 70 to 150 μm, which comprises a dielectric layer, a circuit metal layer stacked on the dielectric layer and bonding pads higher than the dielectric layer by 10 to 15 μm; forming a stabilizing structure around the substrate to provide a receiving space; disposing the chip on the receiving space and bonding the pins of the chip with the bonding pads; and filling up the receiving space under the chip with a filling material to a total thickness ranging from 300 to 850 μm. Without the plastic molding process, the present invention reduces the cost and the total thickness, and further prevents the substrate from warping by use of the stabilizing fixing structure.
Abstract:
A laminate circuit board with a multi-layer circuit structure which includes a substrate, a first circuit metal layer, a second circuit metal layer, a first nanometer plating layer, a second nanometer plating layer and a cover layer is disclosed. The first circuit metal layer is embedded in the substrate or formed on at least one surface of the substrate which is smooth. The first nanometer plating layer with a smooth surface covers the first circuit metal layer. The second nanometer plating layer is formed on the other surface of the substrate and fills up the opening in the cover layer to electrically connect the first circuit metal layer. The junction adhesion is improved by the chemical bonding between the nanometer plating layer and the cover layer/the substrate. Therefore, the circuit metal layer does not need to be roughened and the density of the circuit increases.
Abstract:
A manufacturing method of a semiconductor load board is disclosed. The manufacturing method includes a first conductive layer forming step, a first patterning step, a dielectric layer forming step, a drilling step, a second conductive layer forming step, a second patterning step or a two-times patterning step, and a solder connecting step. In a second patterning step or a two-times patterning step, a solder pad is formed in the opening of the dielectric layer, wherein each solder pad has a height higher than the height of the dielectric, and the width of each solder pad is equal to or smaller than the maximum width of the opening, such that wider intervals are provided in the same area and the problems of short circuit failure and electrical interference can be reduced.
Abstract:
A solder pad structure with a high bondability to a solder ball is provided. The present invention provides a larger contact area with the solder ball so as to increase the bondability according to the principle that the bondability is positive proportional with the contact area therebetween. The solder pad structure includes a circuit board having a solder pad opening defined by a solder resist layer surrounding a circuit layer. The circuit layer within the solder pad opening is defined as a solder pad. In such a way, after filling the solder ball into the solder pad opening, besides walls of the solder pad opening, there is an extra contact area provided by a geometric shape of the solder pad for further improving the bondability of the solder pad and the solder ball.
Abstract:
A method for manufacturing a heat dissipation structure of a printed circuit board includes: forming a barrier layer on the dimple in the first copper plating layer; forming a nickel plating layer; removing the nickel plating layer and the barrier layer on the dimple; forming a second copper plating layer to make the total height of the first copper plating layer and the second copper plating layer in the second opening higher than that of the first copper plating layer in the first opening; filling the dimple in the second copper plating layer with an etching-resistant material; removing the second copper plating layer; removing the nickel plating layer and the etching-resistant material to make the second copper plating layer in the second opening being at the same height as the first copper plating layer in the first opening; and forming the heat dissipation structure by photolithography.
Abstract:
Structure and method of making a board having plating though hole (PTH) core layer substrate and stacked multiple layers of blind vias. More stacking layers of blind vias than conventional methods can be achieved. The fabrication method of the board having high-density core layer includes the following: after the making of the PTH, the filling material filled inside the PTH of the core layer is partially removed until the PTH has reached an appropriate flattened depression using etching; then image transfer and pattern plating are performed to fill and to level the depression portion up to a desired thickness to form a copper pad (overplating) as the core layer substrate is forming a circuit layer; finally using electroless copper deposition and the pattern plating to make the product.
Abstract:
A carrier substrate and a method for manufacturing the carrier substrate are disclosed herein. The method includes the steps of: providing a core substrate; forming a build-up material layer on the core substrate; forming a via in the build-up material layer; forming a patterned photoresist layer on the build-up material layer covering a portion of the via and exposing an opening from uncovered portion of the via, and a wiring slot connected to the opening; and forming a metal-electroplated layer on the via and the wiring slot. In forming a trace according to the present invention, the metal-electroplated layer is formed as the trace and directly connected to the via, striding or not striding over the via. Additionally, in the carrier substrate structure, there is no need an annular ring to connect the trace to the via, and thus the wiring space is increased.
Abstract:
A method for fabricating an IC board without a ring structure is provided. In the method, after the completion of the core board (including the core through hole), the second pattern photoresist layer is used to mask over the first deposited metal layer, and a portion of the second deposited metal layer (this portion of the second deposited metal layer is to electrically couple to the conductive circuit of the core through hole). Later, the second deposited metal layer, the first deposited metal layer, the metal layer, and the substrate at the innermost layer which are not masked by the second pattern photoresist layer are removed. As a result, the substrate is exposed to form the ringless structure, and to couple a conductive line to the core board through hole.
Abstract:
An antenna carrier plate structure has a first circuit board and a second circuit board. The first circuit board has a first substrate and a conductive connector disposed in the first substrate. The conductive connector has two opposite connecting ends respectively protruding from two opposite surfaces of the first substrate. The second circuit board has a second substrate formed with a through hole, and a connecting plug is disposed in the through hole. One end of the connecting plug is formed with an engaging concave portion for engaging one end of the conductive connector of the first substrate. Therefore, each circuit board can be firmly fixed and electrically connected by engaging to form a multi-layer circuit board module, thereby avoiding joint tolerances during soldering and ensuring a correct connection of the joints.