Abstract:
A polymeric material includes a polyisobutylene-polyurethane block copolymer. The polyisobutylene-polyurethane block copolymer includes soft segments, hard segments, and end groups. The soft segments include a polyisobutylene diol residue. The hard segments include a diisocyanate residue. The end groups are bonded by urea bonds to a portion of the diisocyanate residue. The end groups include a residue of a mono-functional amine.
Abstract:
A polymeric material includes a polyisobutylene-polyurethane block copolymer. The polyisobutylene-polyurethane block copolymer includes soft segments, hard segments, and end groups. The soft segments include a polyisobutylene diol residue. The hard segments include a diisocyanate residue. The end groups are bonded by urea bonds to a portion of the diisocyanate residue. The end groups include a residue of a mono-functional amine.
Abstract:
An implantable drug eluting medical device includes a polymer substrate having a surface, a first plurality of nanofibers, and at least one antimicrobial drug. Each of the first plurality of nanofibers includes a first portion interpenetrated with the surface of the substrate to mechanically fix the nanofiber to the substrate, and a second portion projecting from the surface. The at least one antimicrobial drug is disposed within or among the second portion of the first plurality of nanofibers.
Abstract:
A method of preventing infection resulting from implanting a medical device. The method includes installing a polymer device at least substantially within a subcutaneous pocket formed to contain a housing of the medical device, and installing the medical device housing in the subcutaneous pocket. The polymer device includes a bioresorbable polymer structure and an antimicrobial agent configured to elute from the polymer structure. The polymer device covers less than about 20% of the surface area of the medical device housing.
Abstract:
A block copolymer including a plurality of polymeric chains and a plurality of cross-linking compound residues linking together the plurality of polymeric chains. The plurality of polymeric chains forms a plurality of hard domains and a plurality of soft domains. Each polymeric chain includes a plurality of soft segments and a plurality of hard segments. The plurality of soft segments includes a polyisobutylene diol or diamine residue. The plurality of soft segments forms the plurality of soft domains. The plurality of hard segments including a diisocyanate residue. The plurality of hard segments forms the plurality of hard domains. The cross-linking compound residues link together the hard segments of the plurality of polymeric chains.
Abstract:
A coating for a metal surface, the coating including poly(ethylene glycol) disposed on and covalently bonded directly to at least a portion of the metal surface, and a functional group grafted to at least a portion of the poly(ethylene glycol). The functional group is one of a bioactive functional group and an antimicrobial functional group.
Abstract:
A coating for a roughened metal surface of an implantable medical device includes a poly(ethylene glycol) disposed on at least a portion of the roughened metal surface, wherein the poly(ethylene glycol) is covalently bonded directly to the roughened metal surface.
Abstract:
A polymer device configured to be implanted into a subcutaneous pocket to prevent infection, the pocket formed to contain an implantable medical device housing. The polymer device includes a structure made of a bioresorbable polymer, and an antimicrobial agent configured to elute from the structure. The polymer device is configured to cover less than about 20% of the surface area of the implantable medical device housing when implanted into the subcutaneous pocket.
Abstract:
A method of making a solution including a block copolymer includes dissolving the block copolymer in a solvent mixture to form a solution, the solvent mixture including at least two solvent components. The solubility of the block copolymer in the solvent mixture is at least about 7 wt. % at about 64° C. The solvent mixture is non-reactive with the block copolymer. The solubility of the block copolymer in a single solvent solution consisting of any one of the at least two solvent components and the block copolymer is not greater than about 1 wt. % at about 64° C. The block copolymer includes polyisobutylene segments and polyurethane segments.
Abstract:
Described is a medical device lead including a lead body having a conductor lumen including an inner surface. The lead also includes a conductor assembly extending through the conductor lumen; the conductor assembly comprising a conductor member and an outer insulative layer; and an electrode coupled to the conductor cable. The outer insulative layer includes a textured external surface that reduces the coefficient of friction between the outer insulative layer and the inner surface of the conductor lumen through which the conductor assembly extends. Methods of forming the conductor assembly are also described.