Abstract:
An implantable medical device (IMD) may include an outer housing having a titanium outer surface, the titanium outer surface including a plurality of titanium atoms. A tissue growth-inhibiting layer may extend over the titanium outer surface. In some cases, the tissue growth-inhibiting layer may include a plurality of polyethylene glycol molecules, at least some of the plurality of polyethylene glycol molecules covalently bonded via an ether bond to one of the plurality of titanium atoms.
Abstract:
A method for producing an antimicrobial coating on a surface. The method includes mixing a parylene dimer and an antimicrobial agent to form a mixture, heating the mixture to sublimate the parylene dimer and suspend the antimicrobial agent within the sublimated parylene dimer, pyrolyzing the sublimated parylene dimer to form a parylene monomer while the antimicrobial agent is suspended within the parylene monomer, and condensing the parylene monomer and the antimicrobial agent together on the surface to polymerize the parylene monomer and form a coating containing a parylene polymer and the antimicrobial agent.
Abstract:
An implantable antibacterial barrier device for an elongated medical device, the elongated medical device configured to extend from a first site, through a second site, to a third site. The implantable antibacterial barrier device includes a housing configured to be disposed at the first site, a working electrode configured to be disposed at the second site, and a reference electrode configured to be disposed at the first site. The housing includes barrier circuitry. The working electrode electrically is coupled to the barrier circuitry. The reference electrode is electrically coupled to the barrier circuitry. The barrier circuitry is configured to selectively maintain the working electrode at a negative electrical potential relative to the reference electrode to form an antibacterial barrier.
Abstract:
An implantable medical electrical lead is connectable to an electrical header of an implantable pulse generator. The lead includes a lead body, at least one electrode, a lead terminal, and a lead boot. The lead body extends from a proximal end to a distal end. The at least one electrode is disposed at the distal end of the lead body. The lead terminal is disposed at the proximal end of the lead body and configured to connect the lead to the electrical header. The lead boot is formed of an elastic polymer infused with at least one antibiotic drug. A portion of the lead boot is configured to be disposed within the electrical header when the lead is connected to the electrical header.
Abstract:
A method for producing an antimicrobial coating on a surface. The method includes mixing a parylene dimer and an antimicrobial agent to form a mixture, heating the mixture to sublimate the parylene dimer and suspend the antimicrobial agent within the sublimated parylene dimer, pyrolyzing the sublimated parylene dimer to form a parylene monomer while the antimicrobial agent is suspended within the parylene monomer, and condensing the parylene monomer and the antimicrobial agent together on the surface to polymerize the parylene monomer and form a coating containing a parylene polymer and the antimicrobial agent.
Abstract:
An implantable drug eluting medical device includes a polymer substrate having a surface, a first plurality of nanofibers, and at least one antimicrobial drug. Each of the first plurality of nanofibers includes a first portion interpenetrated with the surface of the substrate to mechanically fix the nanofiber to the substrate, and a second portion projecting from the surface. The at least one antimicrobial drug is disposed within or among the second portion of the first plurality of nanofibers.
Abstract:
An implantable medical electrical lead is connectable to an electrical header of an implantable pulse generator. The lead includes a lead body, at least one electrode, a lead terminal, and a lead boot. The lead body extends from a proximal end to a distal end. The at least one electrode is disposed at the distal end of the lead body. The lead terminal is disposed at the proximal end of the lead body and configured to connect the lead to the electrical header. The lead boot is formed of an elastic polymer infused with at least one antibiotic drug. A portion of the lead boot is configured to be disposed within the electrical header when the lead is connected to the electrical header.
Abstract:
An implantable medical device includes a polymer substrate and at least one nanofiber. The polymer substrate includes a surface portion extending into the polymer substrate from a surface of the substrate. The at least one nanofiber includes a first portion and a second portion. The first portion is interpenetrated with the surface portion of the substrate, and mechanically fixed to the substrate. The second portion projects from the surface of the substrate.
Abstract:
This disclosure is directed to a medical device including a surface that has been roughened to provide a roughened surface that inhibits the adhesion of microorganisms on the roughened surface.
Abstract:
A method for making an insertable or implantable medical device including a lubricous coating on a silicone substrate includes treating the silicone substrate with an atmospheric plasma at about atmospheric pressure, the atmospheric plasma formed from a noble gas; applying a solution directly to the treated silicone substrate, the solution including a thermoplastic polyurethane; and heating the silicone substrate and the applied solution to form the lubricous coating on the silicone substrate.