Abstract:
In accordance with an embodiment of the disclosure, a tip array can include an elastomeric tip substrate layer comprising a first surface and an oppositely disposed second surface, the tip substrate layer being formed from an elastomeric material; a plurality of tips fixed to the first surface, the tips each comprising a tip end disposed opposite the first surface, the tips having a radius of curvature of less than about 1 micron; and an array of heaters disposed on the second surface of the tip substrate layer and configured such that when the tip substrate layer is heated by a heater, a tip disposed in a location of a heated portion of tip substrate layer is lowered relative to a tip disposed in a location of an unheated portion of the tip substrate layer.
Abstract:
Disclosed are nanoparticles functionalized with an oligonucleotide and a domain, wherein the domain increases cellular uptake of the nanoparticles. The domain is a sequence of nucleobases or phosphate groups, such as a poly thymidine (polyT) sequence or a phosphate polymer (C3 residue) and may be located 5′ to the oligonucleotide 3′ to the oligonucleotide, within, or colinear with the oligonucleotide. Usage of the nanoparticles including modulating gene regulation is contemplated.
Abstract:
The present disclosure is directed to compositions comprising alkyne oligonucleotides, nanoconjugates prepared from the same, and methods of their use.
Abstract:
Articles, compositions, kits, and methods relating to nanostructures, including synthetic nanostructures, are provided. Certain embodiments described herein include structures having a core-shell type arrangement; for instance, a nanostructure core may be surrounded by a shell including a material, such as a lipid bilayer, and may include other components such as oligonucleotides. In some embodiments, the structures, when introduced into a subject, can be used to deliver nucleic acids and/or can regulate gene expression. Accordingly, the structures described herein may be used to diagnose, prevent, treat or manage certain diseases or bodily conditions. In some cases, the structures are both a therapeutic agent and a diagnostic agent.
Abstract:
A method of forming a nanostructure on a substrate surface can include heating a substrate comprising a composition comprising a block copolymer and a nanostructure precursor to a temperature above the glass transition temperature of the block copolymer and below the decomposition temperature of the block copolymer to aggregate the nanostructure precursor to form a nanostructure precursor aggregated composition. The method can further include heating the nanostructure precursor aggregated composition to a temperature above the decomposition temperature of the nanostructure precursor to decompose the polymer and form the nanostructure.