Abstract:
We describe a method of storing a gas, in particular hydrogen, comprising: providing a polymer sponge, wherein said polymer sponge comprises a plurality of catalytic nanoparticles; providing a solution of reactants, catalysed by said nanoparticles to produce said gas; absorbing said solution into said polymer sponge such that said reactants react within said polymer sponge to produce said gas; wherein said gas is held within said polymer sponge; and wherein said polymer sponge comprises a thermally responsive polymer having a volume which reduces with a change in temperature, such that said gas held within said polymer is extractable by changing a temperature of said polymer sponge.
Abstract:
The invention concerns a process for the preparation of an amorphous mesoporous and macroporous alumina, comprising at least one step for dissolving an acidic precursor of aluminium, a step for adjusting the pH by adding at least one basic precursor to the suspension obtained in step a), a step for co-precipitation of the suspension obtained at the end of step b) by adding at least one basic precursor and at least one acidic precursor to the suspension, a filtration step, a drying step, a shaping step and a heat treatment step.The invention also concerns an amorphous mesoporous and macroporous alumina with a bimodal pore structure having: a specific surface area SBET of more than 100 m2/g; a median mesopore diameter, by volume determined by mercury intrusion porosimetry, of 18 nm or more; a median macropore diameter, by volume determined by mercury intrusion porosimetry, in the range 100 to 1200 nm, limits included; a mesopore volume, as measured by mercury intrusion porosimetry, of 0.7 mL/g or more; and a total pore volume, as measured by mercury porosimetry, of 0.8 mL/g or more.
Abstract:
Process of preparing hydroconversion catalyst comprising: a calcined, predominantly alumina, oxide support; a hydrogenating-dehydrogenating active phase comprising group VIB metal, optionally group VIII metal, optionally phosphorus, the catalyst having: specific surface area ≧100 m2/g, total pore volume ≧0.75 ml/g, median mesopore diameter by volume ≧18 nm, mesopore volume ≧0.65 ml/g, macropore volume 15-40% of total pore volume; comprising: a) dissolving acidic aluminium precursor; b) adjusting pH with basic precursor; c) co-precipitating acidic and basic precursors, at least one containing aluminium, to form suspension of alumina gel with a targeted alumina concentration; d) filtration; e) drying to a powder; f) forming; g) thermal treatment to an alumina oxide support; h) impregnating of the hydrogenating-dehydrogenating active phase on the alumina oxide support. Catalyst prepared by this process and use of this catalyst for hydrotreating or hydroconverting heavy hydrocarbon feedstocks.
Abstract:
The invention concerns a catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 8 nm to 25 nm, a median macropore diameter of more than 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.30 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.34 mL/g or more. The invention also concerns the process for the preparation of said catalyst, and its use in a hydrogenation process.
Abstract:
An amorphous mesoporous alumina with a median mesopore diameter by volume of 16 nm or more, a mesopore volume of 0.5 mL/g or more, and a total pore volume of more than 0.75 mL/g. A process for preparing said alumina, comprising:a) precipitating a basic precursor and an acidic precursor, at least one of which comprises aluminium, at a pH of 8.5 to 10.5, a temperature of 20° C. to 90° C. and for 2 minutes to 30 minutes, with a state of advance of 5% to 13%; b) heating the suspension; c) a second precipitating by adding another basic precursor and acidic precursor, at least one of which comprises aluminium, at a pH of 8.5 to 10.5, a temperature of 40° C. to 90° C. and for 2 to 50 minutes, with a state of advance of 87% to 95%; d) filtration; e) drying; f) shaping; g) heat treatment.
Abstract:
A wash coat is formed by combining platinum group metals (PGM) and an adhesive with a mixture of catalyst support materials according to the relationship (α)RE-Ce—ZrO2+(β)CZMLA+(1−α−β)RE-Al2O3. The RE-Ce—ZrO2 is a commercial material of rare earth elements stabilized ceria zirconia having a weight ratio (α) ranging from 0 to about 0.7; CZMLA is a catalyst support material comprising a core support powder coated with a solid solution and has a weight ratio (β) ranging from about 0.2 to about 1 such that (α+β)≦1. RE-Al2O3 is rare earth element stabilized alumina having a weight ratio equal to (1−α−β). The wash coat exhibits a lower activation temperature compared with traditional wash coat formulations by at least 50° C. This wash coat also requires less RE-Ce—ZrO2 oxide and/or less PGM in the formulation for use as an emission control catalyst for gasoline and diesel engines.
Abstract:
The invention relates to a catalyst suitable for use in the hydrogenation of carbon dioxide-containing gas, said catalyst comprising spinel phase of the formula [Fe2+(Fe3+yAl3+1-y)2O4]. Processes for preparing the catalyst and processes for the hydrogenation of carbon dioxide-containing gas in the presence of the catalyst are also disclosed.
Abstract translation:本发明涉及适用于二氧化碳气体氢化的催化剂,所述催化剂包含式[Fe 2+(Fe 3+ yAl 3+ 1-y)2 O 4]的尖晶石相。 还公开了在催化剂存在下制备催化剂的方法和含二氧化碳气体的氢化方法。
Abstract:
A catalyst that includes cerium oxide having a fluorite lattice structure is provided. The cerium oxide includes cerium atoms in mixed valence states of Ce3+/Ce4+, in which the ratio of Ce3+/(Ce3++Ce4+) in the lattice ranges from 40% to 90% at 20° C. The valence states Ce3+ and Ce4+ are reversible in reduction and oxidation reactions, and the cerium oxide maintains catalytic ability at temperatures at least up to 450° C.
Abstract translation:提供了包括具有萤石晶格结构的氧化铈的催化剂。 氧化铈包括Ce 3+ / Ce 4+的混合价态的铈原子,其中晶格中的Ce 3+ /(Ce 3+ ++ Ce 4+)的比例在20℃为40%至90%。化合价Ce 3+和Ce 4+为 在还原和氧化反应中是可逆的,并且氧化铈在至少高达450℃的温度下保持催化能力。
Abstract:
The present invention discloses a composite catalyst for the photocatalytic isomerisation of norbornadiene to prepare quadricyclane, comprising: a solid photocatalyst, selected from the group consisting of TiO2, Ti-MCM-41, Ti-SBA-15, ZnO, WO3, Ta2O5 or SrTiO3; and an organic photo-sensitizer loaded on the surface or in the channel of said solid photocatalyst, selected from benzophenone, acetophenone, Michler's Ketone, tetraethyl Michler's Ketone, and diethyl Michler's Ketone, where the organic photo-sensitizer is present in the solid photocatalyst in an amount of 0.5% to 20% by weight. The catalyst of the invention can catalyze a target reaction under the condition that no solvent is used, and the yield of the target product quadricyclane is higher. Furthermore, the catalyst of the invention has a stable activity, and it can be recycled. The invention further discloses a process for preparing the composite catalyst.
Abstract:
An improved hydrocarbon conversion catalyst is obtained through removal and modification by various means, of detrimental large and/or small particle fractions. Such modified fractions may be reused in the same or similar processes. The improved catalyst is advantageous to a wide range of hydrocarbon conversion processes.