Abstract:
An embodiment is a method for bonding. The method comprises bonding a handle substrate to a capping substrate; thinning the capping substrate; etching the capping substrate; and after the thinning and the etching the capping substrate, bonding the capping substrate to an active substrate. The handle substrate has an opening therethrough. The method also comprises removing the handle substrate from the capping substrate. The removing comprises providing an etchant through the opening to separate the handle substrate from the capping substrate. Other embodiments further include forming a bonding material on a surface of at least one of the handle substrate and the capping substrate such that the capping substrate is bonded to the handle substrate by the bonding material. The bonding material may be removed by using a dry etching to remove the handle substrate from the capping substrate.
Abstract:
A dual backplate MEMS microphone system includes a flexible diaphragm sandwiched between two single-crystal silicon backplates. Such a MEMS microphone system may be formed by fabricating each backplate in a separate wafer, and then transferring one backplate from its wafer to the other wafer, to form two separate capacitors with the diaphragm.
Abstract:
An embodiment is a method for bonding. The method comprises bonding a handle substrate to a capping substrate; thinning the capping substrate; etching the capping substrate; and after the thinning and the etching the capping substrate, bonding the capping substrate to an active substrate. The handle substrate has an opening therethrough. The method also comprises removing the handle substrate from the capping substrate. The removing comprises providing an etchant through the opening to separate the handle substrate from the capping substrate. Other embodiments further include forming a bonding material on a surface of at least one of the handle substrate and the capping substrate such that the capping substrate is bonded to the handle substrate by the bonding material. The bonding material may be removed by using a dry etching to remove the handle substrate from the capping substrate.
Abstract:
Transferable probe tips including a metallic probe, a delamination layer covering a portion of the metallic probe, and a bonding alloy, wherein the bonding alloy contacts the metallic probe at a portion of the probe that is not covered by the delamination layer are provided herein. Also, techniques for creating a transferable probe tip are provided, including etching a handler substrate to form one or more via arrays, depositing a delamination layer in each via array, depositing one or more metals in each via array to form a probe tip structure, and depositing a bonding alloy on a portion of the probe tip structure that is not covered by the delamination layer. Additionally, techniques for transferring transferable probe tips are provided, including removing a handler substrate from a probe tip structure, and transferring the probe tip structure via flip-chip joining the probe tip structure to a target probe head substrate.
Abstract:
A method for the production of a fibrous network-substrate component includes the steps of providing a network of fibrous material (1) on a preliminary substrate (2) by filtering high aspect ratio molecular structures (HARM-structures) from gas flow, placing the network of fibrous material (1) on the preliminary substrate (2) in proximity to a secondary substrate (3), applying a force to the network of fibrous material (1) to preferably attract the network of fibrous material (1) from the preliminary substrate (2) to the secondary substrate (3) in order to transfer the network of fibrous material (1) from the preliminary substrate (2) to the secondary substrate (3), and removing the preliminary substrate (2) from the network of fibrous material (1).
Abstract:
A chip package includes a semiconductor substrate and a metal layer. The semiconductor substrate has an opening and a sidewall surrounding the opening, in which an upper portion of the sidewall is a concave surface. The semiconductor substrate is made of a material including silicon. The metal layer is located on the semiconductor substrate. The metal layer has plural through holes above the opening to define a MEMS (Microelectromechanical system) structure, in which the metal layer is made of a material including aluminum.
Abstract:
A method of fabricating a capacitive micromachined ultrasonic transducer (CMUT) according to one aspect of the present invention may include forming, on a semiconductor substrate, a first region implanted with impurity ions at a first average concentration and a second region implanted with no impurity ions or implanted with the impurity ions at a second average concentration lower than the first average concentration, forming an insulating layer by oxidizing the semiconductor substrate wherein the insulating layer includes a first oxide layer having a first thickness on at least a part of the first region and a second oxide layer having a second thickness smaller than the first thickness on at least a part of the second region, and forming a membrane layer on the insulating layer such that a gap is defined between the second oxide layer and the membrane layer.
Abstract:
A method for manufacturing a structure comprising membranes overhanging cavities, comprises:
a) forming cavities opening at a front face of a support substrate, the cavities having a depth and an area, and being spaced apart by a spacing; b) assembling, by way of direct bonding, a donor substrate on the support substrate to seal the cavities under vacuum, the direct bonding being hydrophilic and involving a given number of water monolayers at a contact interface between the substrates; and c) transferring a thin layer from the donor substrate onto the support substrate, the thin layer comprising the membranes.
A specific area is defined around each cavity in the plane of the contact interface and is expressed as a function of half of the spacing. The area, the depth of each cavity, and the specific area are defined in step a) to satisfy a particular relationship.
Abstract:
A method of liquid-mediated pattern transfer includes providing a substrate comprising (a) a semiconductor film adhered to the substrate and (b) a first patterned layer on the semiconductor film. The substrate is submerged in a delamination liquid, whereby the semiconductor film is delaminated from the substrate while the first patterned layer remains on the semiconductor film. A patterned semiconductor membrane ready for transfer is thus obtained. The patterned semiconductor membrane is transferred to a target substrate in a transfer liquid, and then the transfer liquid is removed (e.g., evaporated). The patterned semiconductor membrane adheres to the target substrate as the transfer liquid is removed.
Abstract:
A method for processing a silicon wafer with a through cavity structure. The method is operated in accordance with the following sequence: performing ion implantation on a silicon wafer or pattern wafer; implanting a dummy substrate; bonding the silicon wafer to the pattern wafer; performing grinding and polishing, and thinning the pattern wafer to a depth exposing the pattern; bonding; and peeling the dummy substrate. Compared with the prior art, the present invention is standard in operation, and the product quality can be effectively guaranteed. The product has high cost performance and excellent comprehensive technical effect. The present invention has expectable relatively large economic values and social values.