Abstract:
Provided is lithium disilicate crystalline glass containing cristobalite crystal phase for high strength and aesthetic traits and its manufacturing process thereof. Exemplary embodiments of the present invention provide the high strength and aesthetic lithium disilicate crystalline glass, one kind of dental restoration materials, and its manufacturing method which induces the growth of the different crystal phase, cristobalite, from glass with lithium disilicate crystal.
Abstract:
A method of manufacturing fluorescent material-dispersed glass, comprising: performing production of a fluorescent material-dispersed gel utilizing sol-gel reaction and acid-base reaction by preparing a fluorescent material-dispersed sol containing silicon alkoxide, metal chloride and/or metal aklkoxide, and fluorescent material, and subsequently gelling the fluorescent material-dispersed sol; and performing production of a fluorescent material-dispersed glass by heating the fluorescent material-dispersed gel.
Abstract:
A method for adjusting an etchability of a first borosilicate glass by heating the first borosilicate glass; combining the first borosilicate glass with a second borosilicate glass to form a composite; and etching the composite with an etchant. A material having a protrusive phase and a recessive phase, where the protrusive phase protrudes from the recessive phase to form a plurality of nanoscale surface features, and where the protrusive phase and the recessive phase have the same composition.
Abstract:
The invention relates to a method for producing a doped SiO2 slurry in which an SiO2 suspension is brought into interaction with at least one doping solution, wherein the SiO2 suspension and/or the doping solution act on one another in the form of an atomised spray, the average droplet diameter of which is in the range between 10 μm and 100 μm. The invention further relates to the use of an SiO2 slurry doped by the atomised spray method for the production of doped quartz glass, particularly for the production of laser-active quartz glass.
Abstract:
The invention relates to a multimode optical fiber having a refractive index profile, comprising a light-guiding core surrounded by one or more cladding layers. The present invention furthermore relates to an optical communication system comprising a transmitter, a receiver and a multimode optical fiber.
Abstract:
Methods for forming optical fiber preforms are disclosed. According to one embodiment, a method for forming an optical fiber preform includes forming a preform core portion from silica-based glass soot. The silica-based glass soot may include at least one dopant species for altering an index of refraction of the preform core portion. A selective diffusion layer of silica-based glass soot may be formed around the preform core portion to form a soot preform. The selective diffusion layer may have an as-formed density greater than the density of the preform core portion. A diffusing species may be diffused through the selective diffusion layer into the preform core portion. The soot preform may be sintered such that the selective diffusion layer has a barrier density which is greater than the as-formed density and the selective diffusion layer prevents diffusion of the at least one dopant species through the selective diffusion layer.
Abstract:
According to one example of the invention an optical fiber comprises: (i) a core comprising Al doped silica but essentially no Er or Yb, and having a first index of refraction n1; (ii) at least one F doped silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2, wherein the cladding comprises essentially of SiO2 and 0.2-5 wt % F; (iii) a hermetic carbon based coating surrounding said cladding, said hermetic coating being 200 to 1000 Angstroms thick; and (iv) a second coating surrounding said hermetic coating, said second coating being 5 μm to 80 μm thick.
Abstract:
An amplifying optical fiber includes a core containing oxides of elements selected from the group consisting of silicon, germanium, phosphorus, bismuth, aluminum, gallium with a concentration of bismuth oxide of 10-4-5 mol %, a total concentration of silicon and germanium oxides of 70-99.8999 mol %, a total concentration of aluminum and gallium oxides of 0.1-20 mol % wherein both aluminum and gallium oxide are present and a ratio of aluminum oxide to gallium oxide is at least two, and a concentration of phosphorus oxide from 0 to 10 mol %, and provides a maximum optical gain at least 10 times greater than the nonresonant loss factor in the optical fiber. An outside oxide glass cladding comprises fused silica. The core has an absorption band in the 1000 nm region, pumping to which region provides an increased efficiency of power conversion of pump light into luminescence light in the 1000-1700 nm range.
Abstract:
According to one example of the invention an optical fiber comprises: (i) silica based, rare earth doped core having a first index of refraction n1; (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2; wherein at least one of the core or cladding is doped with Al2O3, such that the ratio of max wt % to min wt % of Al2O3 concentration is less than 2:1.
Abstract translation:根据本发明的一个示例,光纤包括:(i)具有第一折射率n1的二氧化硅基稀土掺杂的核; (ii)至少一个围绕所述芯并且具有第二折射率n2的基于二氧化硅的包层,使得n1> n2; 其中所述芯或包层中的至少一个掺杂有Al 2 O 3,使得最大wt%与Al 2 O 3浓度的最小重量%的比率小于2:1。
Abstract:
The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.