Abstract:
A valve opening and closing timing control apparatus includes: a driving side rotor synchronously rotating with a crankshaft of an engine; a driven side rotor disposed at a coaxial core with a rotary shaft core of the driving side rotor and integrally rotating with a camshaft for a valve opening and closing; a connecting bolt disposed at the coaxial core with the rotary shaft core to connect the driven side rotor to the camshaft, and on which an advance angle port and a retard angle port are formed on an outer peripheral surface; and a spool disposed in a spool chamber of the inside of the connecting bolt, and controlling the feeding and discharging of working fluid to the advance angle port or the retard angle port from a pump port formed on the connecting bolt.
Abstract:
A torsion assembly for providing controllable torsion to a camshaft, including: a spring assembly including a first spring; and, a contact element arranged to engage at least one lobe for the camshaft. For a locked mode: the contact element is arranged to be displaced by the at least one cam lobe; the contact element is arranged to compress the first spring; and the first spring is arranged to impart a first torque to the camshaft via the contact element. For an unlocked mode, the contact element is arranged to be displaced by the at least one cam lobe and the contact element is arranged to impart a second torque, less than the first torque, to the cam shaft via the contact element.
Abstract:
A cam bearing lubrication structure for an internal combustion engine includes a cylinder head having a cam bearing region, a plug hole for an ignition plug and a plug tube fitted liquid-tight therein. The cam bearing lubrication structure includes an outer periphery oil path bypassing along an outer peripheral face of the plug tube, a main lubricating oil passage extending through the plug hole and formed to connect to the outer periphery oil path and a guide passage formed in and through the cam bearing region to connect a sliding face of the cam bearing region from the outer periphery oil path and supplying lubricating oil to a sliding face of the cam bearing region and a camshaft. In addition, a lubricating oil supplying structure is provided for a valve apparatus for further increasing the oil supply amount to achieve a further increase in the speed of the engine.
Abstract:
An oil passage structure of a dry sump engine includes an oil recovery passage, at least one first communicating hole, and a first oil suction passage. The oil recovery passage extends in a direction in which a cylinder bank extends and is disposed so that at least part of the oil recovery passage is located outward of an external lower end portion of a valve gear chamber of a cylinder head along a junction between a side wall portion of the cylinder head and a bottom surface of the valve gear chamber in a state where the dry sump engine is mounted on a vehicle in an inclined manner. The at least one first communicating hole is provided in the side wall portion so as to connect the valve gear chamber of the cylinder head and the oil recovery passage.
Abstract:
A continuously variable valve duration apparatus may include a camshaft, a plurality of first cams and second cams of which a cam key is formed respectively thereto, and of which relative phase angles with respect to the camshaft are variable, a plurality of rotation rings mounted to the camshaft and of which a ring key is formed thereto respectively, a plurality of inner brackets transmitting rotation of the camshaft to the cam keys of the first cams and the seconds respectively, a plurality of slider housings of which each inner bracket is rotatable inserted therein and of which a control slot is formed thereto respectively, an eccentric control shaft inserted into the control slots and a control portion selectively rotating the eccentric control shaft to move positions of the slider housing and change positions of the inner brackets.
Abstract:
A multiple variable valve lift apparatus may include a camshaft rotating by driving of an engine, a cam portion formed in a cylindrical shape having a hollow that the camshaft is inserted into, rotating together with the camshaft, configured to move along an axial direction of the camshaft, and forming a zero cam and a normal cam, a valve opening/closing device configured to be operated by at least one of the zero cam or the normal cam which are formed at the cam portion, an operating device disposed on an exterior circumference of the camshaft so as to move together with the cam portion, and a solenoid configured to selectively move the operating device along an axial direction of the camshaft, in which a journal, which has a radius being equal to a radius of the zero cam, is formed at the cam portion.
Abstract:
A variable valve mechanism of an internal combustion engine includes a plurality of swing members and a variable device that displaces a control shaft to displace a plurality of slider gears of the swing members at a time, thereby changing valve lifts of the plurality of swing members at a time by meshing of helical splines. The swing members include a first swing member for a predetermined cylinder of a plurality of cylinders and a second swing member for a cylinder other than the predetermined cylinder, and a helix angle of the helical splines varies between the first and the second swing members. The variable device displaces the control shaft to a predetermined normal position to perform a normal operation, and displaces the control shaft to a predetermined cylinder cutoff position to perform a cylinder cutoff operation in which the second swing member does not drive a valve.
Abstract:
The invention relates to a DOHC sliding cam valve train of an internal combustion engine with a four-cylinder in-line arrangement and cylinder shutoff. One of the two camshafts has two shared cam pieces for the respective adjacent engine cylinders.
Abstract:
A valve train assembly is provided, comprising an exhaust camshaft having an exhaust lobe and a brake lobe, an exhaust lever mounted adjacent the exhaust lobe, a brake lever mounted adjacent the brake lobe, wherein the exhaust lever is coupled to the brake lever to provide simultaneous movement of the exhaust lever and the brake lever in response to the exhaust lobe and independent movement of the brake lever in response to the brake lobe.
Abstract:
An engine brake apparatus may include an exhaust rocker arm having a chamber in which an actuator is slidably inserted, an oil line coupling part which has a central portion extrapolated with an oil line, a communication line communicating with the oil line, a distribution line branched from the communication line and having one portion extending toward a check ball and another portion extending toward a relief valve, a supply line including one portion connected to the check ball and another portion connected to the chamber, and a discharge line including one portion connected to the relief valve and another portion connected to the chamber, wherein the check ball is elastically supported by a check spring in a direction in which the distribution line is closed, and wherein the relief valve is elastically supported by a relief spring in a direction in which the discharge line is opened.