Abstract:
A spectrometer 1A is provided with an integrating sphere 20 for observing measured light emitted from a sample S of a measurement target, and a Dewar vessel 50 which retains a medium R for regulating temperature of the sample S, so as to cover the sample S and a second container portion 50b of which is located so as to face the interior of the integrating sphere 20. The sample S can be easily regulated at a desired temperature with the use of the Dewar vessel 50 retaining the medium R so as to cover the sample S. As the second container portion 50b is located so as to face the interior of the integrating sphere 20, the temperature of the sample S is regulated by the medium R, while inhibiting an external ambience around the integrating sphere from affecting the sample S. Therefore, the sample S can be efficiently regulated at a desired temperature.
Abstract:
A measurement device for spectroscopic examination of samples comprises a cavity extending in a longitudinal direction, a first opening to face a sample, a plurality of second openings for capturing light originating from the sample and at least one third opening for coupling light into the cavity. Such a measurement device is particularly suitable for spectroscopic examinations of planar samples.
Abstract:
An optical measurement apparatus includes a spectroscopic measurement device, a first optical fiber for propagating light to be measured, a hemispherical portion having a light diffuse reflection layer on an inner wall of the hemispherical portion, and a plane portion disposed to close an opening of the hemispherical portion and having a mirror reflection layer located to face the inner wall of the hemispherical portion. The plane portion includes a first window for directing the light emitted thorough the first optical fiber into an integrating space. The integrating space is formed by the hemispherical portion and the plane portion. The optical measurement apparatus further includes a second optical fiber for propagating the light in the integrating space to the spectroscopic measurement device through a second window of the plane portion.
Abstract:
Provided are an integrating sphere photometer and a measuring method of the same. The integrating sphere photometer includes a plurality of photodetectors, an integrating sphere having through-holes formed to correspond to the photodetectors, baffles disposed inside the integrating sphere in front of the photodetectors to be spaced apart from the photodetectors, a photometer disposed at a through-hole, and an adjustment unit adjusting output signals of the photodetectors to have the same output signal with respect to light illuminated from a point-like standard light source disposed at a center region in the integrating sphere.
Abstract:
An integrating sphere photometer and a measuring method of the same are provided to precisely measure a directional light source. The integrating sphere photometer includes an integrating sphere having a plurality of through-holes, a plurality of photometers disposed at the through-holes, baffles disposed in front of the photometers to be spaced apart therefrom, an auxiliary light source disposed inside the integrating sphere, an auxiliary baffle disposed in front of the auxiliary light source, and a summing unit of output signals of the photometers under the illumination of a light source to be measured disposed in the central area inside the integrating sphere.
Abstract:
An improved method and an improved device for carrying out an optical comparison between at least two samples, preferably by comparing sections that can be selected, is characterized by the following characteristics: the sample (UR, LE, I) that is to be examined and is characterized by a non-uniformity in the structure and/or color is illuminated by diffused light; from the light reflected by the sample (UR, LE, I) to be examined, an interference spectrum is created by means of a spectrometer; the interference spectrum created by the spectrometer is depicted on a camera; the interference spectrum obtained in this way and/or values of the sample (I) to be examined derived therefrom are used as sample values which are compared to sample values of a reference sample (UR, LE) obtained accordingly.
Abstract:
The present invention provides an optical transmission device, comprising a chamber having a light input into the chamber, and having a first port allowing light to pass out of the chamber, and comprising internal surfaces where at least a portion of the surfaces is diffusely reflecting, and where at least a portion of the one or more surfaces is specularly reflecting, and where the light input and the first port and the one or more surfaces are configured such that substantially all light entering the chamber via the light source within a first predetermined aperture must encounter the diffusely reflecting portion before exiting the chamber via the first port within a second predetermined aperture. The invention can provide substantially homogenous light transmission, both as a source of light for optical systems and as a collector of light from a sample.
Abstract:
A light fixture, using one or more solid state light emitting elements utilizes a diffusely reflect chamber to provide a virtual source of uniform output light, at an aperture or at a downstream optical processing element of the system. Systems disclosed herein also include a detector, which detects electromagnetic energy from the area intended to be illuminated by the system, of a wavelength absent from a spectrum of the combined light system output. A system controller is responsive to the signal from the detector. The controller typically may control one or more aspects of operation of the solid state light emitter(s), such as system ON-OFF state or system output intensity or color. Examples are also discussed that use the detection signal for other purposes, e.g. to capture data that may be carried on electromagnetic energy of the wavelength sensed by the detector.
Abstract:
A sample that is an object whose quantum efficiency is to be measured, and a standard object having a known reflectance characteristic are each attached to a sample window provided in a plane mirror. Based on respective spectrums measured by a spectrometer in respective cases where the sample is attached and the standard object is attached, the quantum efficiency of the sample is measured. The plane of an opening of an observation window is made substantially coincident with the exposed surface of the sample or standard object, so that direct incidence, on the observation window, of the fluorescence generated from the sample receiving an excitation light and the excitation light reflected from sample is prevented.
Abstract:
A system to provide radiant energy of selectable spectral characteristic (e.g. a selectable color combination) uses an integrating cavity to combine energy of different wavelengths from different sources. The cavity has a diffusely reflective interior surface and an aperture for allowing emission of combined radiant energy. Sources of radiant energy of different wavelengths, typically different-color LEDs, supply radiant energy into the interior of the integrating cavity. In the examples, the points of entry of the energy into the cavity typically are located so that they are not directly visible through the aperture. The cavity effectively integrates the energy of different wavelengths, so that the combined radiant energy emitted through the aperture includes the radiant energy of the various wavelengths. The apparatus also includes a control circuit coupled to the sources for establishing output intensity of radiant energy of each of the sources. Control of the intensity of emission of the sources sets the amount of each wavelength of energy in the combined output and thus determines a spectral characteristic of the radiant energy output through the aperture.