Abstract:
A spectral measurement device includes: an optical band-pass filter section that has first to n-th wavelengths (n is an integer of 2 or more) having a predetermined wavelength width as a spectral band thereof; a correction operation section that corrects a reception signal based on an output optical signal from the optical band-pass filter section; and a signal processing section that executes predetermined signal processing based on the reception signal corrected by the correction operation section that corrects the reception signal based on the change in the spectral distribution of the reception signal.
Abstract:
The invention is directed to methods and systems of hyperspectral and multispectral imaging of medical tissues. In particular, the invention is directed to new devices, tools and processes for the detection and evaluation of diseases and disorders such as, but not limited to diabetes and peripheral vascular disease, that incorporate hyperspectral or multispectral imaging.
Abstract:
Embodiments of the invention are directed to integrated resonance detectors and arrays of integrated resonance detectors and to methods for making and using the integrated resonance detectors and arrays. Integrated resonance detectors comprise a substrate, a conducting mirror layer, an active layer, and a patterned conducting layer. Electromagnetic radiation is detected by transducing a specific resonance-induced field enhancement in the active layer to a detection current that is proportional to the incident irradiance.
Abstract:
An optical device includes a first protrusion group in which protrusions protruding from a conductor surface of a substrate are arranged in a first direction with a first period, a dielectric layer that covers the conductor surface and the first protrusion group, and a second protrusion group in which metal nanoparticles are arranged on the dielectric layer in the first direction with a second period different from the first period. When one of the first period and the second period is defined as Px1, the other of the first period and the second period is defined as Px2, and the wavelength of irradiation light is defined as λ, λ>Px1>Px2 and 0
Abstract:
An apparatus and source arrangement for filtering an electromagnetic radiation can be provided which may include at least one spectral separating arrangement configured to physically separate one or more components of the electromagnetic radiation based on a frequency of the electromagnetic radiation. The apparatus and source arrangement may also have at least one continuously rotating optical arrangement which is configured to receive at least one signal that is associated with the one or more components. Further, the apparatus and source arrangement can include at least one beam selecting arrangement configured to receive the signal.
Abstract:
The invention is directed to methods and systems of hyperspectral and multispectral imaging of medical tissues. In particular, the invention is directed to new devices, tools and processes for the detection and evaluation of diseases and disorders such as, but not limited to diabetes and peripheral vascular disease, that incorporate hyperspectral or multispectral imaging.
Abstract:
A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
Abstract:
The object is to easily expand a variable range of selective wavelengths without enlarging a device. A spectral device 1 of the present invention includes four band pass filters 11a to 11d through which a light L2 from a light source 3 is selectively transmitted within a wavelength range according to an incident angle of the light L2, and a tabular rotary table 10 in which the band pass filters 11a to 11d are installed upright on a principal surface 10a, and which is made rotatable around a rotational center C1 along the principal surface 10a, and the four band pass filters 11a to 11d are respectively disposed so that optical incidence planes 12 or optical emission planes 13 are inclined with respect to lines connecting the rotational center C1 on the principal surface 10a of the rotary table 10 and center points 15a and 15d of the bandpass filters 11a to 11d.
Abstract:
The invention pertains to a new type of spectroscope comprising an array of Fabry-Perot cells having no moving parts and that can be fabricated inexpensively using semiconductor fabrication techniques.