Abstract:
A smartphone is adapted for use as an imaging spectrometer, by synchronized pulsing of different LED light sources as different image frames are captured by the phone's CMOS image sensor. A particular implementation employs the CIE color matching functions, and/or their orthogonally transformed functions, to enable direct chromaticity capture. A great variety of other features and arrangements are also detailed.
Abstract:
Embodiments of the invention are directed to integrated resonance detectors and arrays of integrated resonance detectors and to methods for making and using the integrated resonance detectors and arrays. Integrated resonance detectors comprise a substrate, a conducting mirror layer, an active layer, and a patterned conducting layer. Electromagnetic radiation is detected by transducing a specific resonance-induced field enhancement in the active layer to a detection current that is proportional to the incident irradiance.
Abstract:
An optical filter device includes a variable wavelength interference filter having a pair of reflecting films opposed to each other, and an electrostatic actuator adapted to change a gap dimension between the pair of reflecting films, and at least one bandpass filter disposed on an optical axis of the pair of reflecting films, and the bandpass filter includes a plurality of transmission wavelength bands in which light is transmitted.
Abstract:
An angle restriction filter that allows light incident thereon in a predetermined range of incident angles to pass, includes: an optical path wall section formed from a plurality of light shield members laminated in layers including a common material, thereby forming an optical path in a lamination direction of the light shield members; and a light transmission section formed in a region surrounded by the optical path wall section.
Abstract:
An optical filter includes a first variable wavelength bandpass filter that extracts light of a first wavelength band and has first and second spectral bands and a second variable wavelength bandpass filter that extracts light of a second wavelength band adjacent to the first wavelength band and has third and fourth spectral bands. Part of the period during which the light of the first spectral band is extracted overlaps with the period during which the light of the third spectral band is extracted, and part of the period during which the light of the second spectral band is extracted overlaps with the period during which the light of the fourth spectral band is extracted.
Abstract:
Information is encoded in an image signal by exploiting spectral differences between colors that appear the same when rendered. These spectral differences are detected using image sensing that discerns the spectral differences. Spectral difference detection methods include using sensor-synchronized spectrally-structured-light imaging, 3D sensors, imaging spectrophotometers, and higher resolution Bayer pattern capture relative to resolution of patches used to convey a spectral difference signal.
Abstract:
In the color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may represent a color display in which a member surrounds the outer periphery of the screen of the display and a color measuring instrument is coupled to the first member. The color measuring instrument includes a sensor spaced from the screen at an angle with respect to the screen for receiving light from an area of the screen. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the sample to a spectrograph. The color measuring instruments provide for non-contact measurements of color samples either displayed on a color display, or printed on a sheet, and are self-calibrating by the use of calibration references in the instrument.
Abstract:
A light distribution characteristic measurement apparatus for measuring the light distribution characteristic of a light source is provided. The apparatus includes a plurality of detectors arranged so that they have a predetermined relative relationship with each other. One detector has a detection range at least partially overlapping a detection range of another detector adjacent to the former detector. The apparatus further includes a drive unit that drives a plurality of detectors as one unit to update a positional relationship of the plurality of detectors relative to the light source, and a calculation unit that calculates the light distribution characteristic of the light source by performing a process depending on at least one of a relative relationship between a plurality of detectors and overlapping of respective detection ranges thereof, based on respective results of detection that have been acquired by the plurality of detectors at the same timing.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associate color of a structure is also provided.
Abstract:
Disclosed is an image capturing device having an irradiation unit, an image capturing unit, and a color representation setting unit. The irradiation unit irradiates a subject with infrared rays having different wavelength intensity distributions, the image capturing unit captures images of the subject by the respective infrared rays having different wavelength distributions which are reflected by the subject, and forms image information indicating the respective images, and the color representation setting unit sets color representation information for representing the respective images, which are indicated by the formed image information, by different plain colors. Also disclosed is an image capturing method for separating infrared rays from a subject into infrared rays having different wavelength intensity distributions, capturing images of the subject by the respective infrared rays having different wavelength intensity distributions, forming image information indicating the respective images, and representing the respective images, which are indicated by the formed image information.