Abstract:
An active heterodyne detection system comprises a continuously tuneable laser source (1) emitting infra-red radiation, means (8) to split the infra-red radiation into a first part and a second part, means (4) to provide a frequency shift between the first part and the second part, means (8, 9) to direct the first part of the infra-red radiation to a target (2), means (4) to provide the second part of the infra-red radiation as a local oscillator, means (8, 9) to collect a scattered component of the first part of the infra-red light from the target (2), and means (5) to mix the scattered component and the local oscillator and route them to a detector (3) for heterodyne detection over a continuous spectral range. A method of active heterodyne detection over a continuous spectral range is also disclosed.
Abstract:
The invention provides a high resolution, wide dynamic range, multi-colour detection platform for microfluidic analysers/instruments and methods. The detection platform uses multiple high gain semiconductor optical sensors for the detection of luminescence from cellular or biological samples. The digitized outputs from these sensors are combined and weighted in a signal processing unit, using pre-determined algorithms for each colour, which optimise the resolution in each of these high gain semiconductor optical sensors while extending the dynamic range of the detection platform.
Abstract:
The device for measuring an optical absorption characteristic of a sample according to the present invention comprising a light source, a optical wave-guide having light input surface(s) and light output surface(s) that are opposite to each other, and a light reflecting surface on which a sample to be measured is disposed, through which the light passes and is reflected by a total reflection on the sample, one or more light transmitting means arranged between the light output surface of the optical wave-guide and the light input surface of the optical wave-guide so that the light is again entered into the optical wave-guide, and a processing device which receives the light re-exited from the optical wave-guide through the output surface and detects the optical absorption characteristics of the sample on the basis of the light received, whereby the light which passes through the optical wave-guide is conducted to the optical wave-guide again, the light is again entered the optical wave-guide, and the light is again reflected on the sample (FIG. 1).
Abstract:
An apparatus and method for optically measuring concentrations of components allow enhancement in measurement accuracy of concentration. The apparatus includes a cell, a light irradiator, a photodetector, and an arithmetic unit. The cell presents different optical path lengths at different locations and is to contain a sample therein. The light irradiator, which includes a variable-wavelength laser generator and a measuring system composed of convex lenses, outputs a collimated, enlarged laser beam, and makes the laser beam incident upon the cell. The photodetector comprises a multiplicity of photodetectors arranged in parallel to the surface of the cell, so that it can detect intensity of rays of transmitted light that have traveled over different optical path lengths at positions of an equal distance from the cell. The arithmetic unit, receiving a signal from the individual photodetectors, calculates concentrations of components in the sample based on optimum optical path lengths for different wavelengths and values of transmitted light at positions of the optimum optical path lengths, and further outputs calculation results.
Abstract:
Calibrating reflector device to calibrate an optical measuring system having an optical fiber optics probe, for example, for measuring the oxygen saturation of blood. The calibrating reflector device comprises a housing that is open on one end, a reflecting device in the form of an opaque layer in which reflecting particles are embedded, as well as a positioning plug with a central bore, in which the fiber optics probe can be received with a certain frictional resistance. A transparent layer is disposed between the front end of fiber optics probe and the reflecting layer, on whose surface the front end of fiber optics probe can be arranged by the positioning plug.
Abstract:
A probe for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables.
Abstract:
A device for optical detection of analytes in a sample includes at least two optoelectronic components. The optoelectronic components include at least one optical detector configured to receive a photon and at least one optical emitter configured to emit a photon. The at least one optical emitter includes at least three optical emitters disposed in a flat, non-linear arrangement, and the at least one optical detector includes at least three optical detectors disposed in a flat, non-linear arrangement. The at least three optical emitters and the at least three optical detectors include at least three different wavelength characteristics.
Abstract:
A gas sensor comprises an enclosure configured to receive a gas. The enclosure comprises a sidewall extending, around a transverse axis, between a first wall and a second wall. The sensor also comprises a light source configured to emit a light wave that propagates in the enclosure and forms, from the light source, a first light cone. A measuring photodetector is configured to detect the light wave emitted by the light source and propagated through the enclosure. The first wall and the second wall each comprise at least one reflective surface, forming a portion of an ellipsoid of revolution. Each reflective surface is associated with a rank n, n being an integer greater than or equal to 1.
Abstract:
A super resolution technique, intended mainly for fluorescence microscopy, acquires the three-dimensional position of an emitter, through a hybrid method, including a number of steps. In a first step the two-dimensional position of an emitter is acquired, using a technique, named in this application as an Abbe’s loophole technique., In this technique a doughnut, or a combination of distributions, having a zero intensity at the combined center of the distributions, is projected onto the sample containing the emitter, under conditions wherein the doughnut null is moved towards the emitter to reach a position in which the emitter does not emit light. In a second step, an axial measurement is obtained using a 3D shaping method, characterized by the fact that the emitted light is shaped by an additional optical module creating a shape of the light emitted by the emitter, this shape being dependent of the axial position and means to retrieve the axial position from the shape.
Abstract:
An apparatus and method for detecting microbes use laser speckles. The apparatus includes a light source configured to irradiate light into a sample to detect microbes, and a measuring part configured to measure laser speckles, which are formed due to a multiple scattering of the light which is incident into the sample, every reference time and to measure concentration of the microbes contained in the sample based on temporal correlation of the measured laser speckles.