Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
The spectrum of light, inelastically scattered by a sample (16) is measured. The light is guided through a capillary (12) from and to the sample, at least in one of these directions, through the channel no inelastic scattering of light occurs which can form an interfering background when measuring on the sample. By guiding the light through the channel, inelastic scattering of this light is prevented and it becomes possible to guide scattered light back through the channel to spectral analysis equipment (14) without problems with inelastic scattering during the guidance of the light. Preferably, the light is guided through the channel of the capillary in both directions.
Abstract:
A molecular sieve particle-based analytic chemistry system is disclosed in which populations of encoded molecular sieve particles carrying different chemical functionalities are distributed into wells etched in an optical fiber bundle. The chemical functionalities are encoded on separate shaped molecular sieve particles using luminescent dyes and/or molecular sieve particle shapes and thus, a single sensor array may carry thousands of chemistries. Such encoded molecular sieve particles can provide at least a five-fold enhancement in tunable parameters for increasing the encoding possibilities of high throughput screening assays relative to the present dye-modified polymeric microsphere standard.
Abstract:
The translucency of a material is determined by illuminating the material and detecting the intensity of radiation leaving the material as a function of distance from the radiation source. The resulting measurements may be used to determine a "translucency gradient" for the material. In the case of materials in sheet form or having a defined thickness, the translucency can be measured in transmission mode or back scattering mode to measure "through translucency" or "surface translucency".
Abstract:
A chemical sensor having a sheath, an optical fiber bundle, a mirror, and a mechanism associated with the optical fiber bundle for detecting light interaction, wherein the optical fiber means or the mirror is slidably disposed in the sheath, is provided. At least a portion of the sheath is permeable to a fluid suspected of containing a target chemical. The optical fiber bundle has a portion disposed in the sheath for emitting light to cause optical interaction with the target chemical surrounded by the sheath. The mirror is disposed in the sheath to reflect light emitted by the optical fiber bundle.
Abstract:
A spectroscopic system may include: a probe having a probe tip and an optical coupler, the optical coupler including an emitting fiber group and first and second receiving fiber groups, each fiber group having a first end and a second end, wherein the first ends of the fiber groups are formed into a bundle and optically exposed through the probe tip; a light source optically coupled to the second end of the emitting fiber group, the light source emitting light in at least a first waveband and a second waveband, the second waveband being different from the first waveband; a first spectrometer optically coupled to the second end of the first receiving fiber group and configured to process light in the first waveband; and a second spectrometer optically coupled to the second end of the second receiving fiber group and configured to process light in the second waveband.