Abstract:
The present teachings relate to a method and system for normalizing spectra across multiple instruments. In an embodiment of the present invention, the method comprises at least one reference instrument and a test instrument. Each instrument comprises at least one excitation filter and at least one emission filter arranged in pairs. Each instrument further comprises a pure dye plate comprising a plurality of wells. Each well contains a plurality of dyes where each dye comprises a fluorescent component. Fluorescent spectra are obtained from each instrument for each dye across multiple filter combinations to contribute to a pure dye matrix Mref for the reference instrument and pure dye matrix M for the test instrument. The pure dye spectra can then be multiplied by correction factors for each filter pair to result in corrected pure dye spectra, then normalized and the multicomponenting data can be extracted.
Abstract:
The present teachings relate to a method of generating calibration information during a real-time polymerase chain reaction (RT-PCR) or other amplification reaction. A sample well plate or other support can contain one or more dyes or other reference materials that are subjected to the same RT-PCR thermal cycles or other conditions used to conduct amplification or other reactions on a biological sample. A set of maxima values and a set of minimum values, and/or other calibration information useful for adjusting emission data for sample dyes can be recorded, for example, for 10 cycles, 20 cycles, or each cycle of a complete RT-PCR run. Such testing of dye response under realistic operating conditions can enable more accurate characterization of plate, dye, filter, or instrument response and therefore more accurate calibration corrections and other and/or adjustments.
Abstract:
On-board non-uniformity correction calibration methods for a microbolometer focal plane array in a thermal camera are disclosed. The methods include performing first calculations in the processor unit of the thermal camera to generate and apply a set of coarse correction bias voltages to the detector elements. The method also includes performing calculations in the external computer based on image data collected by the thermal camera with the coarse correction bias voltages applied to the detector elements to generate a set of fine correction bias voltages. The method also includes downloading the fine correction bias voltages to the thermal camera and applying the fine correction voltages to the detector elements to establish a fine calibration of the microbolometer focal plane array.
Abstract:
The present invention is directed to an apparatus and method for measuring the haze value of transmissive samples. The apparatus comprises a first light source selectively configurable to emit a first light beam, a second light source selectively configurable to emit a second light beam, an integrating sphere having an outer surface and an inner surface, the inner surface configured to reflect light incident upon the inner surface, the inner surface further enclosing an interior volume. The integrating sphere is further equipped with an exit port configured to emit light from the interior volume of the integrating sphere. The exit port is positioned such that light from the first light source exits the integrating sphere without obstruction, and light from the second light source is diffused on the interior surface of the integrating sphere prior to exiting the exit port. A light detector is also included and is configured to generate a light-intensity signal when light exiting the integrating sphere has passed through a sample and is incident on the light detector. The apparatus further includes a processor configured to receive the light-intensity signal and generate an output signal to a user indicating the haze value. The present invention is also directed to a method of calculating the haze value of a sample using a stored calibration value, a diffuse transmission value (sample-absent diffuse light-intensity value), a direct transmission value (sample-absent direct light-intensity value), a measured diffuse transmission value (sample-present diffuse light-intensity value) and a measured direct transmission value (sample-present direct light-intensity value).
Abstract:
Disclosed herein is a method for improving the precision of a test result from an instrument with an optical system that detects a signal. The method comprises including in the instrument a normalization target disposed directly or indirectly in the optical path of the optical system. Also disclosed are instruments comprising a normalization target, and systems comprising such an instrument and a test device that receives a sample suspected of containing an analyte.
Abstract:
A method of determining auto-calibrating information of a test sensor includes providing an optical read head that includes a light source, a light guide and a detector. The read head forms an opening that is sized to receive a test sensor. The detector includes a linear-detector array or single detector. A test sensor is provided having apertures formed therein. The test sensor is placed in the opening of the optical read head. Light is transmitted from the light source through the apertures. The light transmitted through the apertures using the detector or detecting the absence of light being transmitted through the test sensor using the detector is detected. The detected light or the absence of detected light information from the detector is used to determine the auto-calibration information of the test sensor.
Abstract:
Systems and methods are provided for calibrating emission data or other information signals collected during a polymerase chain reaction (PCR), amplification reaction, assay, process, or other reaction. Calibration of multiple detectable materials can be achieved during a single cycle or run, or during a plurality of runs of the reaction. A reading from every well, container, or other support region of a sample support does not have to be taken. Interpolation can be used to determine values for emission data or other information signals that were not taken, or are unknown, using detected emission data, or other detected information signals. By calibrating the detected emission data and the interpolated data, a more accurate reading of emission data or information signal can be obtained.
Abstract:
Systems and methods are provided for calibrating emission data or other information signals collected during a polymerase chain reaction (PCR), amplification reaction, assay, process, or other reaction. Calibration of multiple detectable materials can be achieved during a single cycle or run, or during a plurality of runs of the reaction. A reading from every well, container, or other support region of a sample support does not have to be taken. Interpolation can be used to determine values for emission data or other information signals that were not taken, or are unknown, using detected emission data, or other detected information signals. By calibrating the detected emission data and the interpolated data, a more accurate reading of emission data or information signal can be obtained.
Abstract:
Systems and methods are provided for calibrating emission data or other information signals collected during a polymerase chain reaction (PCR), amplification reaction, assay, process, or other reaction. Calibration of multiple detectable materials can be achieved during a single cycle or run, or during a plurality of runs of the reaction. A reading from every well, container, or other support region of a sample support does not have to be taken. Interpolation can be used to determine values for emission data or other information signals that were not taken, or are unknown, using detected emission data, or other detected information signals. By calibrating the detected emission data and the interpolated data, a more accurate reading of emission data or information signal can be obtained.
Abstract:
Systems and methods are provided for calibrating emission data or other information signals collected during a polymerase chain reaction (PCR), amplification reaction, assay, process, or other reaction. Calibration of multiple detectable materials can be achieved during a single cycle or run, or during a plurality of runs of the reaction. A reading from every well, container, or other support region of a sample support does not have to be taken. Interpolation can be used to determine values for emission data or other information signals that were not taken, or are unknown, using detected emission data, or other detected information signals. By calibrating the detected emission data and the interpolated data, a more accurate reading of emission data or information signal can be obtained.