Abstract:
A two dimensional array distributed x-ray apparatus of this disclosure includes: a vacuum box which is sealed at its periphery, where the interior thereof is high vacuum; a plurality of electron transmitting units arranged in one plane in a two dimensional array on the wall of the vacuum box; an anode having targets corresponding to the plurality electron transmitting unit arranged in parallel with the plane of the plurality of electron transmitting units in the vacuum box; a power supply and control system having a high voltage power supply connected to the anode, a filament power supply connected to each of the plurality of the electron transmitting units, and a grid-controlled apparatus connected to each of the plurality of electron transmitting units; and a control system for controlling each power supply.
Abstract:
A flat emitter configured for use in an X-ray tube is presented. The X-ray tube includes a first conductive section including a first terminal. Further, the X-ray tube includes a second conductive section including a second terminal. Also, the X-ray tube includes a third conductive section disposed between the first conductive section and the second conductive section, wherein the third conductive section is configured to emit electrons toward a determined focal spot, and wherein the third conductive section includes a plurality of slits subdividing the third conductive section into a winding track coupled to the first conductive section and the second conductive section, wherein at least two of the plurality of slits are interwound spirally to compose the winding track, and wherein the winding track is configured to expand and contract based on heat provided to the third conductive section.
Abstract:
An X-ray generator is provided using a transmission type target having a long life span, where it is possible to change the point for generating X-rays on the surface of the target while maintaining the vacuum chamber in a high vacuum state. A portion of a vacuum chamber 1 that includes a target 2 is linked to a main body portion 1a of the chamber through a linking member 5 as a movable chamber portion 1b. A fixed anode 12 is provided between the target 2 and the electrode 10 at the final stage from among a group of electrodes 8, 9 and 10 for electrostatically accelerating and converging electrons from an electron source 7 and is fixed to the main body portion 1a of the chamber in order to prevent the form of the electrical field from changing when the movable chamber portion 1b is shifted.
Abstract:
Provided is an X-ray generating apparatus, which includes: an X-ray generating tube configured to emit X-rays through a first window; an outer case configured to contain the X-ray generating tube and provided with a second window transmitting the X-rays at a position facing the first window; an insulating fluid with which an unoccupied space of the outer case is filled; an insulating member located between the first window and the second window and provided with an opening in an irradiation area of the X-ray through the first window; and an insulating third window removably fit into the opening of the insulating member, wherein a linear expansion coefficient of the third window is greater than a linear expansion coefficient of the insulating member, and the third window and the first window face each other via a gap through which the insulating fluid is flowable.
Abstract:
Man-portable radiation generation sources and systems that may be carried by hand to a site of interest by one or two people, are disclosed. Methods of use of such sources and systems are also disclosed. Battery operated radiation generation sources, air cooled radiation generation sources, and charged particle accelerators, are also disclosed. A radiation generation source, a radiation scanning system, and a target assembly comprising target material having a thickness of less than 0.20 mm are also disclosed.
Abstract:
One embodiment of the present disclosure is directed to a mobile X-ray unit. The mobile X-ray unit may include a base for accommodating a control unit for controlling an X-ray applicator and a power supply for supplying power to the X-ray applicator. The mobile X-ray unit may further include an articulated arm associated with the base and coupled to the X-ray applicator. The X-ray applicator may have an X-ray tube configured to emit an X-ray beam through an exit window to irradiate an object. The mobile X-ray unit may further include a dosimetry system adapted for real time dosimetry.
Abstract:
An X-ray window including a primary and a secondary window element. In order to evaporate debris by ohmic heating, current flows through the secondary (upstream) window element. Meanwhile, electric charge originating from electron irradiation and/or depositing charged particles is to be drained off the window element. To prevent large debris particles from short-circuiting the window element and changing the desired heating pattern, the current for heating the window element flows through a layer which is insulated from the charge-drain layer.
Abstract:
An x-ray diffraction system includes an x-ray source having a first interchangeable x-ray generating component, a second interchangeable x-ray generating component, an actuator and a controller operatively connected to the actuator. The first and second interchangeable x-ray generating components are interchangeable with one another. The actuator is operatively connected to the first and second interchangeable x-ray generating components. A method for non-destructive x-ray diffraction includes emitting a first x-ray beam from an x-ray source with a first x-ray generating component based on a first desired depth to measure a crystallographic signature of a sample at the first desired depth, interchanging the first x-ray generating component with a second x-ray generating component to form a modified x-ray source, and emitting a second x-ray beam from the modified x-ray source based on a second desired depth, to non-destructively measure a crystallographic signature of the sample at the second desired depth.
Abstract:
An x-ray device utilizes a band of material to exchange charge through tribocharging within a chamber maintained at low fluid pressure. The charge is utilized to generate x-rays within the housing, which may pass through a window of the housing. Various contact rods may be used as part of the tribocharging process.
Abstract:
A two dimensional array distributed x-ray apparatus of this disclosure comprises: a vacuum box which is sealed at its periphery, and the interior thereof is high vacuum; a plurality of electron transmitting units arranged in one plane in a two dimensional array on the wall of the vacuum box; an anode having targets corresponding to the plurality electron transmitting unit arranged in parallel with the plane of the plurality of electron transmitting units in the vacuum box; a power supply and control system having a high voltage power supply connected to the anode, a filament power supply connected to each of the plurality of the electron transmitting units, a grid-controlled apparatus connected to each of the plurality of electron transmitting units, a control system for controlling each power supply; wherein the anode comprises: an anode plate made of metal and parallel to the upper surface of the electron transmitting unit; a plurality of targets arranged on the anode plate and disposed corresponding to the positions of the electron transmitting unit, the bottom surface of the target is connected to the anode plate and the upper surface of the target has a predetermined angle with the anode plate.