Abstract:
A charged particle control apparatus provides very high voltage particle beams. One or more photocell arrays provide bias voltages for beam accelerating stages. The arrays are made from a number of microfabricated photocells connected in series to produce a voltage output that is the sum of the voltages from the individual cells. Arrays of each stage are connected in series to produce a cumulative stage voltage that is applied to an accelerating electrode made part of the stage.These accelerating stages are disposed within a transparent vacuum chamber and are spaced from a charged particle source stage disposed near one end of the chamber. This charged particle source stage includes an emission source such as a photocathode. The photo arrays of the accelerating stages are connected in series to produce a potential that is applied to the particle source stage.Optical power illuminates the stages to generate desired voltage biases to the accelerating electrodes. A light source is used to excite the photocathode when this emission source is used. Electrons from the emission source are accelerated by the accelerating electrodes and are emitted from the chamber which is typically conjoined with other apparatus.By utilizing photocell arrays to generate beam current and accelerating biases, as well as a photocathode for providing a source of electrons, the apparatus of the invention is completely optically isolated thereby requiring no direct electrical connections to the apparatus even though multiple accelerating stages are used to facilitate the achievement of very high voltage particle beams.
Abstract:
With an accelerator for accelerating an electron beam by a voltage of about 400 KV having a stability of 10.sup.-6, it is difficult to use a flexible, insulated cable to feed the output from a power supply to an electron beam and an accelerating tube. Accordingly, the present invention employs a rodlike connector instead of such an insulated cable. A guide means is provided to permit the movement of a power supply column in the direction of the axis of the connector. This facilitates cleaning or otherwise maintaining the power supply column, the electron gun, and the accelerating tube.
Abstract:
In a field emission charged particle microscope having a housing defining a vacuum chamber, a field emission tip disposed in the chamber for generating charged particles, electrode means for establishing electrostatic focusing and accelerating field for forming a beam of charged particles, field electrode means in juxtaposition with the tip for developing an electrostatic field for extraction of charged particles generated by the tip and voltage means connected to the electrode means and the tip for supplying electrical potential thereto to establish the electrostatic fields, the inclusion of an apertured, conductive symmetrical glass resistor disposed intermediate the field electrode means and the electrode means for establishing the focusing and accelerating field, and in electrical contact therewith.
Abstract:
The purpose of the present disclosure is to provide a high-voltage insulating structure capable of reducing an electric field around a conductor to which a high voltage is applied. In this high-voltage insulating structure, an electrically conductive part, to which a high voltage is applied and which extends in an axial direction, is surrounded by an insulator, wherein the insulator comprises a first insulator 105, a second insulator 203 positioned on the opposite side from the first insulator in the axial direction, and a third insulator 205 positioned between the first and second insulators. The electrical resistivity of the third insulator 205 is smaller than the electrical resistivities of the first and second insulators. As for the thickness of the third insulator 205 in the axial direction, a first thickness at the outer side farther from the electrically conductive part is less than a second thickness at the inner side closer to the electrically conductive part.
Abstract:
An apparatus for observing a sample using a charged particle beam includes an ion beam column configured to generate and direct an ion beam, an electron beam column configured to generate and direct an electron beam, a vacuum chamber for housing the sample, and a probe positioned in the vacuum chamber. The probe is configured to provide electrical connection between the sample and a power supply.
Abstract:
An amplifier circuit includes a constant current circuit for outputting a constant current signal at its output terminal, an operational amplifier for outputting an amplified control signal based on the first voltage signal, and an amplified voltage output circuit for outputting a second voltage signal based on both the constant current signal and the amplified control signal. The constant current circuit has a light-emitting device having one end supplied with the constant voltage signal and another end supplied with ground potential, a light responsive electricity generating device for outputting a drive signal in response to light emitted by the light-emitting device, a first transistor generating the constant current signal based on the amplified voltage signal applied thereto and to output the constant current signal; and a current control circuit for detecting the value of the constant current signal and controlling the supply of the drive signal based on the detection.
Abstract:
Provided is a charged particle beam device that is small, high performance, and easy to transport. A charged particle beam device (100) is provided with a detachable body unit (15) and an auxiliary unit (14), the body unit (15) housing a functional unit related to charged particle beams, and the auxiliary unit (14) housing a power source unit (9).
Abstract:
Improvements in the supply of high-frequency electrical power to ozone-producing cells can be accomplished using the systems and techniques described herein. Application of a DC-DC converter operating at a switching frequency substantially greater than a load frequency, supports generation of a high-voltage AC for powering such cells, while allowing for reductions in component size and reductions in a quality factor of a load tuning circuit. Controllable power inverters used in obtaining one or more of the switching and load frequencies can be controlled using feedback techniques to provide stable, high-quality power to ozone-producing cells under variations in one or more of externally supplied power and load conditions. An inrush protection circuit can also be provided to selectively introduce a current-limiting resistance until an input DC bus has been sufficiently initialized as determined by measurements obtained from the DC bus. The current limiting resistance can be a positive-temperature coefficient thermistor.