Abstract:
A mass spectrometer includes a pulsed ion source that generates an ion beam comprising a plurality of ions. A first timed ion selector passes a first group of ions. A first ion mirror generates a reflected ion beam comprising the first group of ions that at least partially compensates for an initial kinetic energy distribution of the first group of ions. A second timed ion selector passes a second group of ions. A second ion mirror generates a reflected ion beam comprising the second group of ions that at least partially compensates for an initial kinetic energy distribution of the second group of ions. A timed ion deflector deflects the second group of ions to a detector assembly comprising at least two ion detectors which detects the deflected ion beam.
Abstract:
A method and apparatus to direct ions away from their otherwise intended or parallel course. Deflectors are used to establish electric fields in regions through which ions are to pass. With such electric fields, ions may be deflected to a desired trajectory. According to the present invention, a multideflector, in the form of a series of bipolar plates spaced evenly across the ion beam path, is used as an ion deflector. A multideflector, including at least three bipolar deflection plates each of which includes a pair of electrically conducting electrodes separated from one another by an insulator, where each electrically conducting electrode in each pair of electrically conducting electrodes has a uniform lengthwise curvature and the electrically conducting electrodes in each pair of electrically conducting electrodes are parallel with one another, with each of the electrically conducting electrodes of the at least three bipolar deflection plates being energized to a potential, with each bipolar deflection plate of the at least three bipolar deflection plates having a first electrode of the pair of electrically conducting electrodes which has a first potential and a second electrode of the pair of electrically conducting electrodes which has a second potential, the first potential and the second potential are of opposite polarities.
Abstract:
The present invention comprises apparatus and methods for rapidly and accurately determining mass-to-charge ratios of molecular ions produced by a pulsed ionization source, and for fragmenting substantially all of the molecular ions produced while rapidly and accurately determining the intensities and mass-to-charge ratios of the fragments produced from each molecular ion.
Abstract:
A method of selecting ions includes generating a group of ions, accelerating the group of ions through a flight region towards an electronic mass selector grid, and selectively varying a voltage applied to the electronic mass selector grid, such that only a selected subset of the group of ions passes through the grid. An apparatus for selecting ions includes an ion generator, an ion accelerator for accelerating ions into a flight region, and an electronic mass selector grid responsive to an applied voltage to pass a subset of the ions from the flight region. An apparatus for detecting a threat molecule includes an ion generator for generating ions from a mixed gas stream, an ion accelerator for accelerating the ions into a flight region, and an electronic mass selector grid. The grid passes only a subset of the ions, such as ions and/or ionized fragments of the threat molecule.
Abstract:
An electrode for influencing ion motion in mass spectrometers, having a dielectric substrate and a conducting layer on portions of the substrate, wherein peripheral borders, edges or convex shapes of the conducting layer adjoin free regions of the substrate. According to the invention, a dielectric layer is provided on transitions from the conducting layer to the adjoining free regions of the substrate such that at least some of the peripheral borders, edges or convex shapes of the conducting layer are covered.
Abstract:
The invention comprises apparatus and methods for rapidly and accurately determining mass-to-charge ratios of molecular ions produced by a pulsed ionization source, and for fragmenting all of the molecular ions produced and rapidly and accurately determining the intensities and mass-to-charge ratios of the fragments produced from each molecular ion.
Abstract:
An automatic gain control (AGC) technique and apparatus is introduced herein for any temporally non-uniform ion beam, such as, for example, an ion beam produced by a MALDI ion source so as to minimize space charge effects. The disclosed configurations and techniques can be achieved by using an ion optical gating element and applying a desired signal waveform (e.g., a square wave) having a predetermined duty cycle. The applied voltage amplitude of such a signal can be configured to switch between a voltage which fully transmits the ions, and a voltage which does not transmit any ions. The frequency is chosen to result in a period which is significantly lower than the smallest non-uniformity period. Techniques of the present invention can also be extended to methods of AGC which can use a single ion injection event from the ion source to avoid variations in ion numbers from an unstable ion source.
Abstract:
A mass spectrometer that employs ion velocity mapping. The mass spectrometer includes velocity mapping ion optics that focus the ions based on their velocity. The focused ions are then directed into a deflection region between two deflection plates. A pulse is applied to the deflection plates that deflect the ions in a transverse direction also according to their mass. The pulse is turned on before the first ion in an ion packet reaches the deflection region, and is turned off before the first ion exits the deflection region. The focused and deflected ions are then reflected by a reflecting device that directs the ions along separate paths to a detector. The detector provides an image of the ion paths, where the location of a spot on the image represents ions of a certain mass and the size of the spot indicates the various velocities of the ions of that mass.
Abstract:
An ion detection system includes a mass analyzer generating an ion beam along an ion beam longitudinal axis. A field generator generates a field for altering the direction of ions in the ion beam away from the ion beam longitudinal axis. A conversion dynode includes an ion collision region on a conversion dynode surface. A conversion dynode axis passes through the ion collision region perpendicular to the conversion dynode surface, the conversion dynode axis being offset from and not intersecting the ion beam longitudinal axis. An electron multiplier receives secondary charged particles from the conversion dynode generated in response to the ion collision with the conversion dynode surface.
Abstract:
A grid structure and method for manufacturing the same. The grid is used for gating a stream of charged particles in certain types of particle measurement instruments, such as ion mobility spectrometers and the like. The methods include various microfabrication techniques for etching and/or depositing grid structure materials on a silicon substrate.