Abstract:
Provided is a wearable device and a method of manufacturing the same. The wearable device includes: a wearable flexible printed circuit board having a circuit pattern formed on a base substrate having flexibility, air-permeability, and waterproofness; and a functional module mounted on the wearable flexible printed circuit board.
Abstract:
A manufacturing method for a component incorporated substrate according to the present invention includes positioning an electronic component with reference to a mark formed on a copper layer, the mark consisting of a material less easily etched than copper by a copper etching agent used for etching of copper, after mounting the electronic component on the copper layer with an adhesive layer interposed therebetween, embedding the electronic component and the mark in an insulating substrate, thereafter, etching and removing a part of the copper layer to form a window for exposing the mark, forming an LVH reaching a terminal of the electronic component with reference to the exposed mark, electrically connecting the terminal and the copper layer via a conduction via formed by applying copper plating to the LVH, and, thereafter, forming the copper layer into a wiring pattern.
Abstract:
Provided is a thermoplastic resin composition which is excellent in platability (appearance of plating), and keeps high reflectance even after thermal aging. A thermoplastic resin composition comprising: per (A) 100 parts by weight of a crystalline thermoplastic resin having a melting point, measured by differential scanning calorimetry (DSC) at a heating rate of 10° C./min, of 250° C. or above; (B) 10 to 80 parts by weight of a glass filler; (C) 1 to 30 parts by weight of a laser direct structuring additive having a reflectance at 450 nm of 25% or above; and (D) 20 to 150 parts by weight of titanium oxide.
Abstract:
A method and an arrangement are disclosed for producing an electrically conductive pattern on a surface. Electrically conductive solid particles are transferred onto an area of predetermined form on a surface of a substrate. The electrically conductive solid particles are heated to a temperature that is higher than a characteristic melting point of the electrically conductive solid particles, thus creating a melt. The melt is pressed against the substrate in a nip, wherein a surface temperature of a portion of the nip that comes against the melt is lower than said characteristic melting point.
Abstract:
A dielectric substrate comprises a resin composition impregnated with non-woven fibrous mat material having a thickness of 5 mils (127 micrometers), wherein the fibrous mat material comprises fibers, having a diameter of 1 nm to 10 μm, that have been extruded through one or more openings to produce fibers that have been collected in the form of a fibrous non-woven mat, and wherein the fibers exhibit a multi-directional orientation in the non-woven mat material. The dielectric substrate is useful in circuit materials, circuits, and multi-layer circuits, economical to make, and has excellent electrical and mechanical properties.
Abstract:
The present disclosure relates to thermoplastic electrostatic dissipative (ESD) composites. The disclosed composites comprise a thermoplastic resin phase and a plurality of intermediate modulus carbon fibers dispersed within the thermoplastic resin phase. Also disclosed herein are methods for the manufacture and/or use of the disclosed ESD composites as well as articles formed from such composites.
Abstract:
The present invention relates to a thermoset resin composition, and a prepreg and a laminate for a printed circuit board manufactured therefrom. The thermoset resin composition comprises the following components: a phosphorus-containing polyphenyl ether resin having low molecular weight, an epoxy resin, a cyanate resin and an accelerator. The prepreg manufactured using the resin composition comprises a base material and the thermoset resin composition adhered to the base material by impregnation and drying. The laminate for a printed circuit board manufactured using the resin composition comprises a plurality of laminated prepregs, a metal foil covering one or two faces of the laminated prepregs by pressing, with each prepreg comprising a base material and the thermoset resin composition adhered to the base material by impregnation and drying. The thermoset resin composition of the present invention has properties such as a low dielectric constant and a dielectric dissipation factor, high heat resistance, a high glass transition temperature, and flame retardancy, etc. The laminates for a printed circuit board manufactured using same have excellent metal foil peel strength, heat resistance and dielectric properties, and are suitable for high frequency and high speed electronic circuit boards.
Abstract:
Provided is a thermoplastic resin composition which is excellent in platability (appearance of plating), and keeps high reflectance even after thermal aging. A thermoplastic resin composition comprising: per (A) 100 parts by weight of a crystalline thermoplastic resin having a melting point, measured by differential scanning calorimetry (DSC) at a heating rate of 10° C./min, of 250° C. or above; (B) 10 to 80 parts by weight of a glass filler; (C) 1 to 30 parts by weight of a laser direct structuring additive having a reflectance at 450 nm of 25% or above; and (D) 20 to 150 parts by weight of titanium oxide.
Abstract:
Provided is a thermoplastic resin molded article excellent in bending strength, flexural modulus and Charpy impact strength, on which the plated layer may be formed in a successful manner. The thermoplastic resin composition for laser direct structuring comprising, per 100 parts by weight of the thermoplastic resin, 10 to 150 parts by weight of an inorganic fiber and 1 to 30 parts by weight of a laser direct structuring additive, the laser direct structuring additive containing at least one of copper, antimony and tin, and having a Mohs hardness 1.5 or more smaller than the Mohs hardness of the inorganic fiber.
Abstract:
Fibrous substrates containing polyetherimides and other synthetic fibers are disclosed, along with methods of preparing electrical insulation paper and articles comprising the fibrous substrates.