Abstract:
A method for manufacturing a probe test structure for microcircuits utilizes a multiple coating method in conjunction with a novel double-cell electroplating apparatus having a relatively high-resistance ion path between the cells. Photoresist is applied to both sides of a copper foil, copper posts are electroformed onto selected areas of one side of the foil through image hole patterns, the remaining photoresist is stripped away, polyimide prepreg is laminated to the post side of the foil, the copper posts are exposed by sanding, photoresist is reapplied to both sides of the sanded remainder, additional copper is electroformed on each post through image hole patterns in the post side of the photoresist, the foil on the side opposite the posts is chemically milled to provide leads integral with each post using appropriate masking techniques and, finally, all of the remaining photoresist is removed to leave the desired test probe set. In a second embodiment, nickel plating is added over the copper to achieve selective etching, permitting processing of both sides of the copper foil simultaneously.
Abstract:
A method for manufacturing a probe test structure for microcircuits utilizes a multiple coating method in conjunction with a novel double-cell electroplating apparatus having a relatively high-resistance ion path between the cells. Photoresist is applied to both sides of a copper foil, copper posts are electroformed onto selected areas of one side of the foil through image hole patterns, the remaining photoresist is stripped away, polyimide prepreg is laminated to the post side of the foil, the copper posts are exposed by sanding, photoresist is reapplied to both sides of the sanded remainder, additional copper is electroformed on each post through image hole patterns in the post side of the photoresist, the foil on the side opposite the posts is chemically milled to provide leads integral with each post using appropriate masking techniques and, finally, all of the remaining photoresist is removed to leave the desired test probe set. In a second embodiment, nickel plating is added over the copper to acheive selective etching, permitting processing of both sides of the copper foil simultaneously.
Abstract:
An interconnect element 130 can include a dielectric layer 116 having a top face 116b and a bottom face 116a remote from the top face, a first metal layer defining a plane extending along the bottom face and a second metal layer extending along the top face. One of the first or second metal layers, or both, can include a plurality of conductive traces 132, 134. A plurality of conductive protrusions 112 can extend upwardly from the plane defined by the first metal layer 102 through the dielectric layer 116. The conductive protrusions 112 can have top surfaces 126 at a first height 115 above the first metal layer 132 which may be more than 50% of a height of the dielectric layer. A plurality of conductive vias 128 can extend from the top surfaces 126 of the protrusions 112 to connect the protrusions 112 with the second metal layer.
Abstract:
A method of fabricating a printed circuit board is disclosed. A method of fabricating a printed circuit board that includes: stacking an insulation layer on at least one surface of a core layer, on which an inner circuit is formed, and forming an outer circuit pattern; burying the outer circuit pattern in the insulation layer; removing the outer circuit pattern to form minute grooves and curing the insulation layer; and forming an outer circuit by filling metal in the minute grooves, makes it possible to readily form high-resolution fine-line circuits, as well as to reduce fabrication costs and increase productivity.
Abstract:
An interconnection element and method for making same is disclosed. The interconnection element may include a plurality of metal conductors, a plurality of solid metal bumps and a low melting point (LMP) metal layer. The solid metal bumps overly and project in a first direction away from respective ones of the conductors. Each bump has at least one edge bounding the bump in at least a second direction transverse to the first direction. The low melting point (LMP) metal layer has a first face joined to the respective ones of the conductors and bounded in the second direction by at least one edge and a second face joined to the bumps. The edges of the bumps and the LMP layer are aligned in the first direction, and the LMP metal layer has a melting temperature substantially lower than the conductors.
Abstract:
To provide a printed wiring board and a method for manufacturing the printed wiring board in which circuit widths of a signal transmission circuit and a power supply circuit or the like, which conventionally require to have greatly different circuit widths, are close to each other as much as possible and substantial miniaturization can be achieved. In order to achieve this object, a printed wiring board obtained by etching a metal-clad laminate including a conductive layer and an insulating layer is employed, in which a first circuit and a second circuit having different thicknesses formed in a same reference plane coexist. In addition, it is characterized in that a thicker circuit of the first circuit or the second circuit has a clad-like configuration in which three layers of a first copper layer/a different kind of metal layer/a second copper layer are sequentially stacked. Further, a manufacture of the printed wiring board is characterized in that a clad composite material in which three layers of a first copper layer/a different kind of metal layer/a second copper layer are sequentially stacked is a start material, and selective etching characteristic between the different kind of metal layer and the copper layer is effectively utilized.
Abstract:
An interconnect element 130 can include a dielectric layer 116 having a top face 116b and a bottom face 116a remote from the top face, a first metal layer defining a plane extending along the bottom face and a second metal layer extending along the top face. One of the first or second metal layers, or both, can include a plurality of conductive traces 132, 134. A plurality of conductive protrusions 112 can extend upwardly from the plane defined by the first metal layer 102 through the dielectric layer 116. The conductive protrusions 112 can have top surfaces 126 at a first height 115 above the first metal layer 132 which may be more than 50% of a height of the dielectric layer. A plurality of conductive vias 128 can extend from the top surfaces 126 of the protrusions 112 to connect the protrusions 112 with the second metal layer.
Abstract:
A method of forming contacts for an interconnection element, includes (a) joining a conductive element to an interconnection element having multiple wiring layers, (b) patterning the conductive element to form conductive pins, and (c) electrically interconnecting the conductive pins with conductive features of the interconnection element. A multiple wiring layer interconnection element having an exposed pin interface, includes an interconnection element having multiple wiring layers separated by at least one dielectric layer, the wiring layers including a plurality of conductive features exposed at a first face of the interconnection element, a plurality of conductive pins protruding in a direction away from the first face, and metal features electrically interconnecting the conductive features with the conductive pins.
Abstract:
Fabricating (100, 1300) a printed circuit board includes fabricating patterned conductive traces (305, 310, 1410, 1415) onto a foil, laminating the patterned conductive traces to a printed circuit board substrate (405, 1505) by pressing on the foil, such that the conductive traces are pressed into a dielectric layer of the printed circuit board, and removing the foil to expose a co-planar surface of conductive trace surfaces and dielectric surfaces. Removal may be done by peeling (125) and/or etching (130, 1315).
Abstract:
A process for producing a circuit board includes the steps of etching the third metal layer of a three-layer metal laminate into a predetermined interconnection pattern by photolithography; forming a laminate on the interconnection pattern by a buildup method, the laminate including interconnection patterns with insulating layers provided therebetween, the interconnection patterns being electrically connected to each other; separating a first metal layer from a supporting substrate to detach the laminate; removing the first metal layer of the three-layer metal laminate by etching using a second metal layer as a barrier layer; and removing the exposed second metal layer by etching.