Abstract:
A structure for supporting a printed wiring board housed in a housing of an electronic device. The supporting structure includes a first projection formed on the housing and projecting toward the printed wiring board. The electronic device includes a conductor plate, which is grounded and accommodated in the housing. A second projection is formed on the conductor plate and projects toward the printed wiring board. The printed wiring board includes a substrate and a ground layer, which is arranged on the substrate. The first projection of the housing and the second projection of the conductor plate hold and support the printed wiring board in between and thereby electrically connect the ground layer to the conductor plate.
Abstract:
A resin multilayer substrate includes a component-containing layer and a thin resin layer stacked on a surface of the component-containing layer. The resin multilayer substrate further includes a surface electrode located on a surface opposite to the surface of the thin resin layer stacked on the component-containing layer, a first via conductor provided in the component-containing layer, which includes an end reaching one surface of the component-containing layer, and a second via conductor provided in the thin resin layer, which includes a first end electrically connected to the surface electrode and a second end electrically connected to the via conductor. A portion of the thin resin layer in contact with the second via conductor defines a projection projecting into the first via conductor.
Abstract:
An electronic component package includes a substrate and an electronic component mounted to the substrate, the electronic component including a bond pad. A first antenna terminal is electrically connected to the bond pad, the first antenna terminal being electrically connected to a second antenna terminal of the substrate. A package body encloses the electronic component, the package body having a principal surface. An antenna is formed on the principal surface by applying an electrically conductive coating. An embedded interconnect extends through the package body between the substrate and the principal surface and electrically connects the second antenna terminal to the antenna. Applying an electrically conductive coating to form the antenna is relatively simple thus minimizing the overall package manufacturing cost. Further, the antenna is relatively thin thus minimizing the overall package size.
Abstract:
A method of manufacturing a printed circuit board (PCB) having embedded resistors, including providing a PCB on which internal layer circuit patterns, including electrode pads, are formed; layering insulating layers on the PCB; forming first via holes on the electrode pads and simultaneously forming second via holes at predetermined locations on the internal layer circuit patterns; forming contact pads for connecting the electrode pads with resistors by filling the first via holes with oxidation-resistant conductive material and flattening the oxidation-resistant conductive material; forming the resistors so that ends of each resistor are connected to two respective contact pads, which are spaced apart from each other; forming circuit patterns on the PCB, in which the second via holes are formed; and layering insulting layers on the PCB having the formed circuit patterns, and forming external layer circuit patterns.
Abstract:
A method of producing a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane.
Abstract:
An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.
Abstract:
A hybrid structure of multi-layer substrates comprises a first multi-layer substrate and a second multi-layer substrate. The first multi-layer substrate stacks up first metal layers, first dielectric layers alternately and has VIAs. A border district of a first metal layer connects with a border district of the corresponding first dielectric layer. The border districts are separated from adjacent first metal layers and adjacent first dielectric layers. The second multi-layer substrate stacks up second metal layers and second dielectric layers alternately. A border district of a second metal layer connects with a border district of the corresponding second dielectric layer. The border districts are separated from adjacent second metal layers and adjacent second dielectric layers. The VIAs are located at the border districts of the first dielectric layers and each VIA has electric conductor therein to connect one first metal layer with one second metal layer.
Abstract:
A flexible circuit is provided. The flexible circuit includes a circuit board mating end and a flexible body extending from the circuit board mating end. A conductive pathway extends through the flexible body to electrically couple circuit boards. A connector pad is positioned on the circuit board mating end. The conductive pathway electrically engages the connector pad. The connector pad is configured to electrically couple the flexible circuit to one of the circuit boards. A layer of uncured material extends between the connector pad and the conductive pathway. The layer of uncured material increases an impedance of the connector pad.
Abstract:
A printed circuit board includes a group of pads suitable to be soldered to a respective group of solder-balls of a device. Each pad of the group has a crack initiation point on its perimeter at a location where cracks in a solder-ball are anticipated to start after that solder-ball is soldered to that pad. For a pad of that group having a microvia located therein, a center of that microvia is located farther than a center of that pad from its crack initiation point. For a pad of that group having a trace merging along a portion of its perimeter, that portion does not include a vicinity of that crack initiation point.
Abstract:
A printed circuit board, which increases the contact area between an IC and a printed circuit board, thus increasing the degree of adhesion, is disclosed. The printed circuit board includes: an insulation layer which includes a first circuit pattern, including at least one via land, embedded in the upper surface of the insulation layer to be flush with the upper surface, and a second circuit pattern formed in the lower surface of the insulation layer to be flush with the lower surface; a solder resist layer formed on the insulation layer; a via hole and a bump integrally formed on the second circuit pattern through the via hole and the via land such that it protrudes from the insulation layer to be higher than the solder resist layer.