Abstract:
A board interconnection structure having a first printed wiring board in which a first conductive circuit is arranged on a first insulating layer, the first conductive circuit having, on an end portion thereof, a first connection terminal in which an upper surface width is narrower than a bottom surface width; a second printed wiring board in which a second conductive layer having a second connection terminal is arranged on a second insulating layer; and a connection layer that forms fillets along longitudinal side surfaces of the first connection terminal, and interconnects the first connection terminal and the second connection terminal. The first connection terminal may have a projection portion.
Abstract:
A hybrid chip-on-heatsink device comprises at least one LED die, at least one printed circuit board (PCB), and a thermally conductive substrate or heatsink. The LED die is physically and thermally coupled to the thermally conductive substrate. The PCB is physically coupled to the thermally conductive substrate. The LED die is electrically coupled to the PCB. The thermally conductive substrate acts as a spreader and as a heatsink, whereby heat is efficiently dissipated away from the LED die. The PCB may optionally contain other electrical components, and circuitry to create a “smart” LED package or light engine.
Abstract:
Provided is a method of connecting conductive traces on one substrate to conductive traces on another substrate using an adhesive containing conductive particles and the resulting article.
Abstract:
A ball grid array (BGA) package having a half-etched bonding pad and a cut plating line and a method of fabricating the same. In the BGA package, the plating line is cut to form a predetermined uneven bonding pad using half-etching, thereby increasing the contact area between the bonding pad and a solder ball. The BGA package includes a first external layer having a first circuit pattern and a wire bonding pad pattern wherein a chip is connected to a wire bonding pad using wire bonding. A second external layer includes a second circuit pattern, a cut plating line pattern, and a half-etched uneven solder ball pad pattern. In the second external layer, another chip is mounted on a solder ball pad. An insulating layer having a through hole interposed between the first and second external layers and electrically connects the first and second external layers therethrough.
Abstract:
A method of producing a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane.
Abstract:
A heat sink (10) is disclosed which comprises a substrate (1), an electrode layer (2) formed on the substrate (1) and a solder layer (3) formed on the substrate (1) wherein the solder layer (3) provides a bonding strength of not less than 30 MPa and a shear strain of not less than 0.07. The heat sink may be a sub-mount which comprises a sub-mount substrate (1), an electrode layer (2) formed on the substrate (1) and a solder layer (3) formed on the substrate (1) wherein the electrode layer (2) is formed with a window portion (2A) having the solder layer (3) embedded therein and is connected to an outer peripheral area of the solder layer (3). A sub-mount that has a high strength of bonding between the solder layer (3) and a semiconductor device is provided at a reduced cost.
Abstract:
An assembly having a substrate and at least one component fastened thereon by sintering using a sintering agent, in particular sintering paste. The sintering agent is situated in a recess of the substrate that accommodates at least some areas of the component. A method for producing an assembly having a substrate and at least one component fastened thereon by sintering using a sintering agent, in particular sintering paste. The sintering agent is brought into a recess of the substrate that accommodates at least some areas of the component.
Abstract:
A wiring board is formed with a substrate, conductive patterns laminated in the thickness direction of the substrate, multiple pads having a predetermined pitch and formed on the same layer as the conductive patterns, a conductive bonding layer arranged on each of the multiple pads, and an electronic component having electrodes. Here, the electronic component is arranged inside the substrate. The electrodes of the electronic component and the multiple pads are electrically connected to each other by means of bonding layers. Also, the height of each of the multiple pads is greater than the height of the conductive pattern adjacent to each pad. Moreover, a protective material related to the bonding layers is not formed at least on the layer where the pads and the first conductive patterns are formed.
Abstract:
According to one embodiment of the invention, a circuit board comprises a conductive layer including a land portion and a line portion connected to the land portion, and; a conductor connected to a surface of the land portion. A planar shape of the connected portion between the conductor and the land portion has a elongated shape along a width direction of the line portion. A part of the connected portion is located within an imaginary region formed by imaginarily extending the line portion toward the land portion.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a substrate on the adhesive including aligning the post with an aperture in the substrate, then flowing the adhesive into and upward in a gap located in the aperture between the post and the substrate, solidifying the adhesive, then etching the post to form a cavity in the post, then mounting a semiconductor device on the post, wherein a heat spreader includes the post and the base and the semiconductor device extends into the cavity, electrically connecting the semiconductor device to the substrate and thermally connecting the semiconductor device to the heat spreader.