Abstract:
A novel catalyst blend for processing of feedstocks into monoaromatics in a single stage, comprising at least one cracking catalyst, one heterogeneous transition metal catalyst, and optionally at least one hydrogenation catalyst. The process occurs in one-step or single stage with substantially no solvents or external additives, or when the feedstock contains less than 15% oxygen, the process includes additional water or steam to enable sufficient amounts of H2 being produced in-situ.
Abstract:
An object of the present invention is to provide titanium oxide granules that have a novel structure and have a characteristic of highly efficient decomposing capability, and a method of decomposing plastic and organic waste by using the granules. The present invention has been completed based on the finding that a method of decomposing plastic waste by using titanium oxide granules having a transition metal and/or a transition metal oxide, in particular copper, supported thereon enables decomposition of plastic waste at extremely high efficiency in a low-temperature region for a long period of time as compared to methods of decomposing plastic waste by using the related-art titanium oxide granules.
Abstract:
A process for preparing 4-cyclohexyl-2-methyl-2-butanol, comprising: a) reaction of styrene with isopropanol at elevated temperature to obtain 2-methyl-4-phenyl-2-butanol, and b) heterogeneously catalyzed hydrogenation of 2-methyl-4-phenyl-2-butanol over a catalyst suitable for ring hydrogenation of aromatics, where the molar ratio of the styrene used in step a) to the isopropanol used in step a) is in the range from 1:below 5 to 1:0.5.
Abstract:
Described are catalyst compositions, catalytic articles, exhaust gas treatment systems and methods that utilize the catalytic articles. The catalyst composition comprises a washcoat including a zeolite, refractory metal oxide support particles, and a platinum group metal supported on the refractory metal oxide support particles. Greater than 90% of the refractory metal oxide particles supporting PGM have a particle size greater than 1 μm and a d50 less than 40 microns.
Abstract:
First, an ionic liquid is placed on a glass slide, which is then installed in an evaporation apparatus, and a metal (for example, indium) is mounted as a target material at a position facing the ionic liquid, followed by sputter deposition of the metal. After sputtering, the ionic liquid containing nanoparticles dispersed therein is recovered. The nanoparticles are solid nanoparticles. Next, the ionic liquid containing the solid nanoparticles dispersed therein is placed in a test tube and then oxidized by heating in air at 250° C. for 1 hour. As a result, hollow nanoparticles having cavities formed in core portions of the solid nanoparticles are produced.
Abstract:
A method of reducing a gaseous carbon oxide includes reacting a carbon oxide with a gaseous reducing agent in the presence of a non-ferrous catalyst. The reaction proceeds under conditions adapted to produce solid carbon of various allotropes and morphologies, the selective formation of which can be controlled by means of controlling reaction gas composition and reaction conditions including temperature and pressure. A method for utilizing a non-ferrous catalyst in a reactor includes placing the catalyst in a suitable reactor and flowing reaction gases comprising a carbon oxide with at least one gaseous reducing agent through the reactor where, in the presence of the catalyst, at least a portion of the carbon in the carbon oxide is converted to solid carbon and a tail gas mixture containing water vapor.
Abstract:
The present invention relates to the use of mesoporous graphitic particles having a loading of sintering-stable metal nanoparticles for fuel cells and further electrochemical applications, for example as constituent of layers in electrodes of fuel cells and batteries.
Abstract:
The present invention relates to a method for preparing a nickel-based catalyst for steam carbon dioxide reforming (SCR) of natural gas using steam and carbon dioxide, more particularly to a method for preparing a nickel-based catalyst represented by Ni/η-Al2O3, which is prepared by supporting nickel on a spherical η-alumina support having many acid sites at high density by repeating impregnation and drying tens of times.The catalyst prepared according to the present invention exhibits superior catalytic activity when used in steam carbon dioxide reforming reaction (SCR) even under harsh conditions of high temperature and high pressure and hardly exhibits carbon deposition due to superior durability.
Abstract:
Two methods of producing nano-pads of catalytic metal for growth of single walled carbon nanotubes (SWCNT) are disclosed. Both methods utilize a shadow mask technique, wherein the nano-pads are deposited from the catalytic metal source positioned under the angle toward the vertical walls of the opening, so that these walls serve as a shadow mask.In the first case, the vertical walls of the photo-resist around the opening are used as a shadow mask, while in the second case the opening is made in a thin layer of the dielectric layer serving as a shadow mask. Both methods produce the nano-pad areas sufficiently small for the growth of the SWCNT from the catalytic metal balls created after high temperature melting of the nano-pads.
Abstract:
Hollow porous metal oxide microspheres are provided. The microspheres may be used as a support for a catalyst, particularly an exhaust treatment catalyst for an internal combustion engine. Also provided are methods of making the microspheres, methods of using the microspheres as catalyst supports, and methods of exhaust treatment using catalyst articles comprising the microspheres.