Abstract:
A high-speed optical sensing device is provided in the present invention. The high-speed optical sensing device has an optical detector, a lens set, and a beam splitter. The optical detector is utilized for detecting luminous intensity. The lens set is utilized for concentrating light beams toward a color analyzer. The beam splitter is aligned to the illuminating device to be detected and is utilized to separate the light beam generated by the illuminating device to the optical detector and the lens set simultaneously.
Abstract:
A multi-channel array spectrometer combines a spectral measurement system and a reference detector which measures photometric or radiometric qualities. High accuracy photometric or radiometric measurement of a wide dynamic range can be achieved by correcting measurement results of the reference detector with a spectral correction factor. The multi-channel array spectrometer comprises a bandpass filter wheel holding a set of bandpass filters and an open hole. The wheel is placed between an entrance slit and gratings. A test light beam passes through a turret of the bandpass filters. The test light beam can be precisely measured band by band. The spectrometer can also quickly and accurately measure a plurality of test light sources having similar spectral characteristics by using the stray light correction factor.
Abstract:
A method for calibrating a sensor in a vehicle, such as a space capsule or other space borne apparatus, uses an expandable integrating sphere. A sensor in the vehicle measures the energy from an electromagnetic energy source within the integrating sphere through a calibration window. The expandable fluid impermeable integrating sphere expands when filled with a fluid, such that when filled with the fluid, its interior is viewable through the calibration window. The system includes a source of fluid to fill the integrating sphere and a fluid regulator coupled to the vehicle to determine when to supply the fluid to the integrating sphere to maintain an appropriate gas pressure level with the integrating sphere.
Abstract:
The invention relates an apparatus and method for forming a diffuse reflector. In one embodiment of the invention, a diffuse reflector is formed by exposing transmissive particles of a pre-determined purity to pressure and forming a material having desired diffuse reflective properties. The transmissive particles may further be thermally treated, such as by sintering, to form material having desired diffuse reflective properties. The treated transmissive particles may then be disposed in a vessel and define a cavity therein to form an integrated cavity diffuse reflector.
Abstract:
In a method of calibrating a light delivery device (10) having a solid state light source (12), for example comprising LEDs of an LED array, and an intensity control unit (16) comprising LED array driver and a dimmer module for generating a control signal for controlling at least the intensity of the light source, the light source is temporarily connected by a light guide (24; 24, 26) to a radiometer (38) for detecting irradiance of the delivered light. The light delivery device has a memory (30) for storing control signal parameters and associated radiance levels. The light delivery device is calibrated by adjusting the control signal parameters, e.g. a PWM duty cycle of a control signal to each of a series of predetermined settings, obtaining from the radiometer a corresponding series of delivered light irradiance levels measured thereby, storing the irradiance levels and associated control signal parameters in memory, and applying a best fit algorithm to the irradiance measurements and control signal parameters. Thereafter, a desired irradiate level can be set by selecting the best fit control signal parameters, such as duty cycle of a PWM control or other parameters. Output intensity levels may be measured at the same time as the irradiance levels and used to compensate for light source output level changes when setting a desired irradiance level.
Abstract:
A uniform light generating system for adjusting output brightness, including a light-generating unit, a light-transmitting unit, a hollow spheroid unit, a light-sensing unit, and a control unit. The light-generating unit has a light-emitting element for generating light beams and a brightness control element for adjusting the luminous flux of the light beam. The hollow spheroid unit is communicated with the other side of the light-transmitting unit for guiding the light beams into an external casing of the hollow spheroid unit. The light-sensing unit detects electric power values in the external casing. The control unit is electrically connected to the light-generating unit and the light-sensing unit. Thereby a user can obtain a real illumination value via adjusting the illumination values of the light beams that are projected from the hollow spheroid unit.
Abstract:
An optical measuring device according to the present invention includes: a plane mirror (3), which has a central opening that functions as either a light entering window or a light source fitting hole (5) and an observation window 6′ that enables a photodetector (6) to take measurements; and an integrating hemisphere (2), which has its center of radius of curvature defined within the central opening of the plane mirror (3) and of which the inner wall surface functions as a light diffuse reflective surface (1). The plane mirror (3) and the integrating hemisphere (2) form an integrating space inside.
Abstract:
A spectrophotometric system includes a zoom lens assembly that is mounted for axial translation relative to an integrating sphere. The zoom lens assembly includes first and second focusing lens mounted to an axially movable lens carrier. The lens carrier is positioned intermediate first and second sets of mirrors for reflecting/directing SCE and SCI beams toward fiber ports. A reference beam is also emitted from the integrating sphere and transmitted to a processor, thereby resulting in simultaneous tri-beam measurements. The disclosed spectrophotometric systems may also include an aperture plate detection assembly and/or a sample holder assembly that incorporates a dampening gas spring. The aperture plate detection system includes a detection disk that may include a plurality of pre-positioned sensors that interact with an activating ridge formed on the aperture plate for identification thereof.
Abstract:
A radiometrically stable, spectrally tunable, solid-state source combines the radiometric outputs of individually controlled, narrow bandwidth, solid-state sources (e.g., LEDs) with different spectral distributions in an integrating sphere so as to approximate any desired spectral distribution. By using a sufficient number of independent solid-state source channels, the source can be tuned to approximate the spectral distribution of any desired source distribution. A stable reference spectroradiometer, integrated into the solid-state light source, measures the spectral radiance or irradiance and is used to adjust the output of the individual channels of the individually controlled sources.
Abstract:
A multifunctional infrared spectrometer system has an interferometer which receives the infrared beam from a source and provides a modulated output beam on beam paths to multiple spatially separated infrared detectors. A multi-position mirror element mounted at a junction position receives the beam on a main beam path and directs it on branch beam paths to sample positions, with the beam then being directed on the branch beam path to one of the detectors. One of the branch beam paths may include a sample holder at the sample position which can index between a position at which a sample is analyzed, to a reference material position, to a pass-through position for calibration purposes. The multi-position mirror element may also be indexed to direct the beam on a branch path to a fiber optic cable which has a probe at the end of it which may be inserted in a sample fluid or powder to be analyzed, with the reflected light from the probe being directed back on an optical fiber cable to a detector at the spectrometer. The multi-position mirror element may be moved to a position at which the beam is directed on a beam path to and through an integrating sphere to a solid sample, with the reflected light from the sample being directed by the surfaces of the integrating sphere to a detector. A detector may be mounted to detect the light transmitted through the sample to obtain measurements of both reflected and transmitted infrared light at the sample.