Abstract:
The present invention relates to a method for manufacturing multi-layer ceramic substrate, a plurality of aluminum oxide ceramic substrate units are piled together, between each two ceramic substrate units is an oxide medium layer which can grow crystal grain during sintering. Such that the upper and lower ceramic substrate units will compactly bind together with the oxide medium layer because the grown crystal grains enter into the gaps or holes formed between the crystal grains of the surfaces of ceramic substrate units during sintering process.
Abstract:
A punch type substrate strip includes a plurality of substrate units, a plurality of slots and at least one plating-trace collecting hole. The slots are formed around the substrate units. The plating-trace collecting hole is located outside the substrate units. The substrate strip is provided with a plurality of connecting pads, a plurality of first plating traces and at least one second plating trace. The connecting pads are disposed in each substrate unit, and the first plating traces and the second plating trace are electrically connected to the connecting pads. The first plating traces have a plurality of first broken ends located in the slots. The second plating trace is extended across a region located between the slots, and has a second broken end located in the plating-trace collecting hole. Accordingly, more extensive space for plating traces can be provided.
Abstract:
A method of manufacturing a hybrid integrated circuit device includes the steps of forming a plurality of units each including a conductive pattern on a surface of a board made of metal, forming grooves along boundaries of the respective units of the board, electrically connecting circuit elements to the conductive patterns in the respective units, separating the respective circuit boards by dividing the board along the grooves, and flattening side surfaces of the circuit boards by pressing the side surfaces.
Abstract:
In preferred embodiments, a method of manufacturing a hybrid integrated circuit device is provided, in which a plurality of circuit substrates 10 are manufactured from a single metal substrate 10A′ by dicing. In some embodiments, the method includes: preparing a metal substrate 10A′ having an insulating layer 11 formed on the top surface thereof; forming a plurality of conductive patterns 12 on the top surface of insulating layer 11; forming grooves 20 in lattice form on the rear surface of metal substrate 10B′; mounting hybrid integrated circuits onto conductive patterns 12; and separating individual circuit substrates 10 with, for example, a rotatable cutter.
Abstract:
A rigid-flexible circuit board with two rigid areas and one flexible area, with a rigid individual layer which is copper-clad on one side, with an adhesive medium and with a copper foil, the adhesive medium having recesses in the flexible area. The rigid-flexible circuit board can be produced especially easily and economically in that at least in the rigid area there is no flexible individual layer, especially no polyimide film, between the adhesive medium and the copper foil.
Abstract:
Plastic casings are simultaneously molded onto several PCBAs attached to a carrier in a closely-spaced arrangement. All edges of each PCBA have integral connecting segments that extend through grooves formed in the associated mold assembly, and are pinched when the molds assembly is closed to precisely and reliably position the PCBA inside of an associated cavity during the molding process. In one embodiment, the PCB substrate is positioned in a bent arrangement to accommodate the use of inexpensive memory devices. Write-protect switches are provided.
Abstract:
Provided is a method of forming a circuit board including (a) providing a first conductive sheet; (b) selectively removing one or more portions of the first conductive sheet to form a first panel having a first circuit board that is coupled to a disposable part of the first panel by at least one tab that extends from an edge of the first circuit board to an edge of the disposable part of the first panel; (c) applying an insulating coating to the first circuit board so that at least each edge of the first circuit board is covered thereby; and (d) separating the first circuit board from the disposable part in a manner whereupon at least part of the tab remains attached to the first circuit board and includes an exposed edge of the conductive sheet of the first circuit board. Circuit boards formed by the method are also provided.
Abstract:
In a dividing method according to the present invention, a wiring board formed of ceramic is forced up (upper swing) by a lower clamp claw of a clamper, and some of a protruded wiring board portion protruding from a conveying chute is pressed against a support body to perform a first division under bending stress. Thereafter, the upward-located clamper is rotatably swung (lower swing) downward to allow an upper clamp claw to press down the protruded wiring board portion, thereby performing a reverse division at the first division section again as a second division. Since the second division allows a tensile force to act on a remaining and thin non-divided resin portion, the non-divided resin portion is torn off. Thus, the perfect division is enabled. Fractionalizing is done by a one-row division and an individual division so that each semiconductor device is formed.
Abstract:
A semiconductor memory card comprises a wiring substrate having input-output terminals for inputting and outputting a signal formed on its topside; a semiconductor memory chip connected to pads formed on a topside or an underside of the wiring substrate; wirings for plating for supplying electric power necessary for electrolytic plating, formed on the wiring substrate and cut at a side edge portion thereof; and a sealing resin for sealing the semiconductor memory chip on the wiring substrate and sealing the side edge portion of the wiring substrate and an end of at least one of the wirings for plating.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.