Abstract:
A spring finger interconnection system can include a plug and a receptacle. In one embodiment, the plug can include spring finger contacts configured to carry electrical signals. The receptacle can include a cavity to receive the plug and the cavity can be constructed with printed circuit board fabrication techniques. In one embodiment, the cavity can be formed, at least in part, in a pre-impregnation layer and a first and a second layer can be disposed above and below the pre-impregnation layer to further form the cavity. In one embodiment, contacts can be arranged on the first layer to contact the spring fingers when the plug is inserted into the cavity. In another embodiment, contacts can be arranged on both the first and the second layers. In yet another embodiment, the cavity can be shaped to aid in contact-to-spring finger alignment when the plug is inserted in the cavity.
Abstract:
A printed circuit board (PCB) includes an edge-component welded to the edge, which includes a plurality of pins. The PCB includes a base board and at least one slot set at edges of the base board. The pins are plugged into the base board through the at least one slot, the at least one slot is set right below the pins, and the position of the at least one slot is designed without copper pouring. In production, copper foil in the at least one slot is cut off, preventing the pins from touching the copper foil on the base board.
Abstract:
Lamp assemblies and methods of making the same are provided. Such a lamp assembly can include a heat sink and a light-emitting diode package that can be mounted to the heat sink. The light-emitting diode package can include a substrate with a top surface and bottom surface, a lens, and electrical contacts on the surface of the substrate. The lamp assembly can also include a printed circuit board with a face surface, a rear surface opposite the face surface and an opening extending from the face surface to the rear surface. The printed circuit board can have electrical contacts thereon for electrical connection with the electrical contacts of the light-emitting diode package. The substrate of the light-emitting diode package can engage the opening of the printed circuit board to mechanically couple the light-emitting diode package to the printed circuit board. When assembled, a bottom surface of the substrate can be flush and aligned with a rear surface of the printed circuit board.
Abstract:
A method of fabrication a circuit board structure comprising providing a circuit board main body, forming a molded, irregular plastic body having a non-plate type, stereo structure and at least one scraggy surface by encapsulating at least a portion of said circuit board main body with injection molded material, and forming a first three-dimensional circuit pattern on said molded, irregular plastic body thereby defining a three-dimensional circuit device.
Abstract:
In a method for producing a printed circuit board consisting of at least two printed circuit regions, wherein the printed circuit board regions each comprise at least one conductive layer and/or at least one device or one conductive component, wherein printed circuit board regions (20, 21, 22) to be connected to one another, in the region of in each case at least one lateral surface directly adjoining one another, are connected to one another by a coupling or connection, and wherein, after a coupling or connection of printed circuit board regions (20, 21, 22) to be connected to one another, at least one additional layer or ply of the printed circuit board is arranged or applied over the printed circuit board regions (20, 21, 22) to be connected to one another, it is provided that the additional layer is embodied as a conductive layer (26), which is contact-connected via plated-through holes (23) to conductive layers or devices or components integrated in the printed circuit board regions (20, 21, 22) to be connected to one another, as a result of which a simple and reliable connection or coupling of printed circuit board regions (20, 21, 22) to be connected to one another can be made available.Furthermore, a printed circuit board consisting of a plurality of printed circuit board regions (20, 21, 22) is made available.
Abstract:
In a method for producing a multilayer ceramic substrate, a green ceramic laminate includes green conductive patterns arranged on a plurality of ceramic green sheets and portions to be formed into a plurality of multilayer ceramic substrates. Boundary-defining conductive patterns are arranged on the ceramic green sheets and along boundaries of the multilayer ceramic substrates. The boundary-defining conductive patterns have firing shrinkage characteristics that are different from those of the ceramic green sheets. During firing of the green ceramic laminate, cavities adjacent to edges of the boundary-defining conductive patterns are formed. A sintered ceramic laminate is divided at edges passing through the cavities.
Abstract:
A printed circuit board assembly has plural printed circuit boards that are mechanically and electrically connected to each other with them being stacked, and a connection layer that connects the adjacent two printed circuit boards to each other is provided. The connection layer includes an insulation portion and an electric conduction portion. The insulation portion contains an insulating member and is adhered to each of the adjacent two printed circuit boards. The electric conduction portion passes through the insulation portion and connects electrode terminals of the adjacent two printed circuit boards.
Abstract:
A substrate connecting member connects two circuit boards connected together while maintaining high reliability of the junctions between itself and the circuit boards even if the circuit boards are warped by temperature change of an impact load. The substrate connecting member includes a frame member made of an insulating resin; slit grooves formed in at least one of the inner and outer surfaces of frame side portions composing the frame member, the slit grooves being formed throughout the entire length of the frame side portions in the direction perpendicular to the thickness direction of the frame side portions; and connection conductor portions having connection terminals provided on the top and bottom surfaces, respectively, of the frame side portions in the thickness direction and connecting conductors each connecting connection terminals.
Abstract:
An illumination device using LEDs (101) has a circuit board and a plurality of LEDs disposed on the circuit board elements. The circuit board can be obtained by assembling a plurality of the circuit board elements (11) together. The circuit board element comprises a board (110) and an electric trace (1151) attached to the board. The board comprises a plurality of connecting units (111, 112, 113, 114) formed at lateral sides thereof. The circuit board element connects with an adjacent circuit board element via the connecting units. The electric trace extends from the board to the connecting units and electrically connects with the electric trace of the adjacent circuit board element.
Abstract:
An embodiment of the present invention is provided with a first wiring board, a cable component juxtaposed with the first wiring board, and second wiring boards laminated onto the first wiring board, which have a second conductor layer pattern connected to the cable component and a second insulating substrate. The cable component comprises a cable having a conductor wire and a sheath portion insulating the conductor wire and a planetary gear-shaped conductor wire coupler connected to the conductor wire and having conductor wire projections which, by passing through the second insulating substrate, abut against the second conductor layer pattern.