Abstract:
A wiring board includes a first wiring layer formed on one surface of a core layer, a first insulating layer formed on the one surface of the core layer so as to cover the first wiring layer, a via wiring embedded in the first insulating layer, a second wiring layer formed on a first surface of the first insulating layer, and a second insulating layer thinner than the first insulating layer formed on the first surface of the first insulating layer so as to cover the second wiring layer. The first wiring layer comprises a pad and a plane layer provided around the pad. One end surface of the via wiring is exposed from the first surface of the first insulating layer and directly bonded to the second wiring layer. The other end surface of the via wiring is directly bonded to the pad in the first insulating layer.
Abstract:
A substrate including a fluid reservoir and a connected fluid channel, the fluid reservoir positioned away from a component region of the substrate, the fluid channel configured to extend from the fluid reservoir to guide an electrically conductive fluid from the fluid reservoir at a reservoir end of the fluid channel through the fluid channel to a component end of the fluid channel, the component end extending to the component region of the substrate to enable the formation of an electrical connection to a connector of an electronic component appropriately positioned in the component region, formation of the electrical connection allowing the electronic component to be interconnected to other electronic components using one or more of the fluid reservoir and fluid channel.
Abstract:
A stacked connector component includes a housing, connectors at a front opening of the housing and arranged in a stacked formation within one or more columns, and a for and exposed at the connectors. The pins include high-speed pins routed within the housing to a bottom side thereof and low-speed pins routed within the housing to a back side or a top side thereof. A circuit board includes pin pads connectable to the pins and disposed on a substrate. The pin pads include high-speed signal pin pads for the high-speed signal pins. The substrate includes contiguous high-speed areas in which the high-speed signal pin pads for the high-speed pins are located, between which no pin pads are located.
Abstract:
A circuit board is provided which includes a plurality of signal pairs of connectors. The signal pairs of connectors are disposed in a triangular grouping of three signal pairs of connectors such that a first connector of each signal pair is located at a vertex of the triangular grouping. A second connector of each signal pair is located at a side of the triangular grouping adjacent to the vertex of the first connector. The signal pairs may be differential pairs.
Abstract:
In accordance with the various embodiments disclosed herein, electrical connector footprints, such as printed circuit boards, is described comprising one or more of signal traces that each include a first section that extends parallel to the linear array direction and a second section extends in a direction that is different than the linear array direction.
Abstract:
An electrical conductor includes a substrate having micro-channels formed in the substrate. A plurality of spaced-apart first micro-wires is located on or in the micro-channels, the first micro-wires extending across the substrate in a first direction. A plurality of spaced-apart second micro-wires is located on or in the micro-channels, the second micro-wires extending across the substrate in a second direction different from the first direction. Each second micro-wire is electrically connected to at least two first micro-wires and at least one of the second micro-wires has a width less than the width of at least one of the first micro-wires.
Abstract:
A stacked connector component includes a housing, connectors at a front opening of the housing and arranged in a stacked formation within one or more columns, and a for and exposed at the connectors. The pins include high-speed pins routed within the housing to a bottom side thereof and low-speed pins routed within the housing to a back side or a top side thereof. A circuit board includes pin pads connectable to the pins and disposed on a substrate. The pin pads include high-speed signal pin pads for the high-speed signal pins. The substrate includes contiguous high-speed areas in which the high-speed signal pin pads for the high-speed pins are located, between which no pin pads are located.
Abstract:
The present invention provides a display panel and a wiring structure thereof. The wiring structure comprises a plurality of metal wires extending across a first wiring region, a second wiring region, and a third wiring region. The first wiring region adjoins the second wiring region. The second wiring region adjoins the third wiring region. A line width of an nth metal wire in the second wiring region is a, and a distance between the nth metal wire and an n+1th metal wire is b, where n≧1. When n is taken as different values, a/(a+b) is a constant value. According to the above method, the coverage ratio in the seal coating region by the metal wires is not changed to avoid the problem of uneven curing of the sealant. The performance stability of the display panel is thus not impacted.
Abstract:
A circuit board circuit apparatus and a light source apparatus including a substrate, a circuit layer, and at least one electronic component are disclosed. The circuit layer is formed on a surface of the substrate. The circuit layer includes a first circuit and a second circuit which are coplanar-disposed. The at least one electronic component is disposed on the circuit layer and connected with the circuit layer. Each electronic component has a first contact and a second contact. At least a part of the second circuit is disposed between the at least one electronic component and the first circuit. The at least one electronic component crosses over the second circuit, so that the second circuit penetrates through the bottom of the electronic component between the first contact and the second contact.
Abstract:
The present disclosure provides techniques for creating a symmetrical ball grid array pattern for an integrated circuit package. The ball grid array includes a symmetrical pattern of circuit connection points, wherein the symmetrical pattern is derived from a base hexagonal pattern that is repeated in at least one or more sections of the ball grid array.