Abstract:
A toroidal printed coil includes a plurality of annular holes (2) and a plurality of center holes (3) surrounded by the annular holes (2) in an insulating substrate (1). A plurality of annular juts (4), each comprising a portion surrounded by the annular hole (2) and the center hole (3), are formed. A printed coil sheet having a plurality of toroidal printed coils, in which a conductor film (6) is spirally formed at front-and-rear surfaces and side surfaces of annular portions (5) of the annular juts (4) with each annular portion taken as an axis, is obtained. With this printed coil sheet, a plurality of toroidal printed coils (P) are obtained by cutting the insulating substrate (1) off from the individual annular juts (4).
Abstract:
An electromagnetic (EM) coupler including a first transmission structure having a first geometry, and a second transmission structure having a second geometry and forming an EM coupler with the first transmission structure, the first and second geometries being selected to reduce sensitivity of EM coupling to relative positions of the first and second transmission structures is disclosed.
Abstract:
An electromagnetic (EM) coupler including a first transmission structure having a first geometry, and a second transmission structure having a second geometry and forming an EM coupler with the first transmission structure, the first and second geometries being selected to reduce sensitivity of EM coupling to relative positions of the first and second transmission structures is disclosed.
Abstract:
A printed circuit board has two layers of printed circuit board dielectric material; a core made of ferromagnetic material between the two layers; and conductive leads on the opposite side of each dielectric layer from the core connected by via holes through both dielectric layers to form a conducting coil around the core. The conductive leads can form two separate coils around the core to form a transformer. A planar conducing sheet can be placed on or between one or more of the printed circuit board's dielectric layers to shield other circuitry on the printed circuit board from magnetic fields generated around the core. The core can be formed at least in part by electroless plating. Electroplating can be used to add a thicker layer of less conductive ferromagnetic material. Ferromagnetic inductive cores can be formed on the surface of a dielectric material by: dipping the surface of the dielectric in a solution containing catalytic metal particles having a slight dipole; and placing the dielectric in a metal salt to cause a layer containing metal to be electrolessly plated upon the dielectric. Plasma etching or other technique can be used before the dipping process to roughen the dielectric's surface to help attract the catalytic particles. This method can be used to form an inductor core on or between one or more dielectric layers of a printed circuit board, of a multichip module, of an integrated circuit, or of a micro-electromechanical device.
Abstract:
A method for attaching an electronic component to a substrate having a patterned conductive layer underlying a dielectric layer includes: removing regions of the dielectric layer to form cavities having an exposed surface area of the conductive layer; filling the cavities with solder paste; heating the solder paste to form a convex surface which protrudes above the substrate surface, for receiving an electronic component for attachment; planarising the convex surface such that it and the surface of the substrate surface are substantially coplanar; placing contact pads of the electronic component adjacent the substrate such that the contact pads overlie given filled cavities; and reheating the solder so that it reflows and connects the electronic component to the substrate. The cavities preferably all have the same volume. If the ratio of exposed surface area to cavity volume is low, pillars form during reflow, spacing the component from the substrate.
Abstract:
An inductor device having plural spiral-shaped interconnection structures connected to each other and extending in plural power source layers, the power source layers being in different levels of a multilayer printed board. The printed board having first and second current loops. The loops share part of a common current path.
Abstract:
An inductor device having plural spiral-shaped interconnection structures connected to each other and extending in plural power source layers, the power source layers being in different levels of a multilayer printed board. The printed board having first and second current loops. The loops share part of a common current path.
Abstract:
A low inductance power connector for reducing inductance in an electrical conductor is provided. An interface connector connects circuit boards together while reducing inductance and increasing current carrying capacity. The connector for connecting circuit boards comprises a first contact having a body, a first mating portion and a second mating portion, and a second contact having a body, a third mating portion and a fourth mating portion. The first and second mating portions are substantially parallel and disposed on opposite sides of the body of the first contact, and the third and fourth mating portions are substantially parallel and disposed on opposite sides of the body of the second contact.
Abstract:
A surface mount circuit device (110), such as a flip chip, of the type which is attached to a conductor pattern (126) with solder bump connections (120). The solder bump connections (120) are formed by reflowing solder on shaped input/output pads (112) on the device (110), with the shape of the pads (112) being tailored to favorably affect optimal distribution, shape and height of the solder bump connections (120) following reflow soldering of the device (110) to the conductor pattern (126). The solder bump connections (120) are preferably characterized by a shape that increases the stand-off height of the device (110). The shaped solder bump connections (120) also promote stress relief during thermal cycling, improve mechanical bonding, allow better penetration of cleaning solutions, and improve flow of encapsulation materials between the device (110) and its substrate (122).
Abstract:
A connector for communications systems has four input terminals and four output terminals, each arranged in an ordered array. A circuit electrically couples each input terminal to the respective output terminal and cancels crosstalk induced across the adjacent connector terminals. The circuit includes four conductive paths between the respective pairs of terminals. The first and third paths are in relatively close proximity and are substantially spaced from the second and fourth paths. The second and fourth paths are in relatively close proximity.