Abstract:
An interposer adapted to be used between a mounting board and a semiconductor chip which is to be mounted on the mounting board. The interposer comprises: a heat-resistant insulator having first and second surfaces, the insulator being provided with a plurality of through-holes opened at the first and second surfaces; wiring patterns formed on the first and second surfaces of the insulator electrically connected to each other by means of a conductor provided on an inner wall of at least one of the through-holes; and a capacitor. The capacitor comprises first electrode formed on the insulator and having a connecting portion formed on an inner wall of at least one of the other through-holes, a dielectric layer formed on the first electrode, and a second electrode formed on the dielectric layer.
Abstract:
A printed capacitor-mounted circuit board capable of increasing a capacity of each of printed capacitors formed on a printed board. A copper-clad laminate is arranged so as to act as an insulating substrate. The printed capacitors each include a first electrode made of a copper foil and arranged on a front surface of the copper-clad laminate. Then, a dielectric layer made of a dielectric paste is arranged on the first electrode and a second electrode made of a conductive paint is arranged on the dielectric layer.
Abstract:
Two types of programmable elements, fuses and antifuses, are disclosed for interconnecting the terminals of electronic components mounted on printed circuit boards (PCBs), multichip modules (MCMs) or in integrated circuit packages (IC packages). Both types of programmable elements can be fabricated as part of the regular processes used to fabricate PCBs, MCMs, or IC package (pin grid array). For fuses and antifuses, the material, geometry and dimensions can be varied to minimize the real estate and maximize programming efficiency (reduce programming time). Each type of programmable element, fuse or antifuse, can be separately used in matrices to form programmable board and package substrates. When both types of programmable elements are used together, more efficient placement and route architectures take advantage of the characteristics of each type of programmable element. Furthermore, combinations of both fuses and antifuses in the same structure allows the architecture to be reprogrammable. Fuse and antifuses can be easily used to form programmable burn-in boards and field programmable smart cards, credit cards, sockets and cable connectors.
Abstract:
A novel antifuse includes a composite of conductive particles dispersed throughout a nonconductive matrix, which composite is located inside an antifuse via. The antifuse via is defined by a dielectric layer that separates two electrodes. The electrodes can be located in the same conductive layer plane (typically parallel to and isolated from one another) or in two different conductive planes (typically formed transverse to one another and separated by a dielectric with an antifuse via formed therein). The electrodes can be coupled to, for example, active or passive regions of the integrated circuit. One embodiment of an antifuse (also called "composite antifuse") has only the composite in an antifuse via between the two conductive layers. Another embodiment of an antifuse (also called "hybrid antifuse") includes in addition to the composite, one or more thin dielectric layers also located in the antifuse via between the two conductive layers.
Abstract:
A programming method in accordance with this invention partitions traces of a fuse matrix into groups wherein each group contains traces connected to fuses that are to remain intact. All of the traces in a group are connected to a first voltage so that the fuses between traces in the group are subjected to minimal currents. In one embodiment, all of the traces that are not in the group connected to the first voltage are connected to a second voltage such that a programming current passes through fuses to be programmed. In an alternative embodiment, traces in a second group are connected to the second voltage and all of the remaining traces are shorted to each other.
Abstract:
A resistive element is formed on a printed circuit board using only printed circuit board fabrication techniques. Two printed circuit board strata are laminated together into a multi-layer printed circuit board. A desired trace pattern is etched into a first layer of a first stratum that has first and second conductive metallic layers clad to opposing sides of a first dielectric substrate. A bi-metallic clad substrate having a resistive layer clad to a first side of a second dielectric substrate, a third conductive layer clad to the resistive layer, and a fourth conductive layer clad to a second side of the second dielectric substrate represents the second stratum. The third conductive layer is etched to leave only pads. The resistive layer is etched to form resistive elements of desired resistivity between the pads. When the two strata are laminated together, the pads couple to the trace pattern at desired locations.
Abstract:
A material for forming of the capacitor layer which generates no crack in drilling on the dielectric layer of the capacitor in manufacturing of a highly multilayered printed wiring board embedded a capacitor circuit. Copper clad laminate for forming of an embedded capacitor layer of a multilayered printed wiring board including an embedded capacitor circuit having a layer structure of copper layer/dielectric layer of the capacitor/copper layer in an inner layer characterized in that the composite elastic modulus Er of the resin film constituting the dielectric layer of the capacitor along the thickness direction is less than 6.1 GPa is employed.
Abstract:
A circuit card assembly includes a substrate having longitudinally spaced first and second substrate end edges and transversely spaced top and bottom substrate surfaces. The top and/or bottom substrate surface has first, second, and third substrate regions. The first substrate region is directly laterally adjacent the first substrate side edge. The third substrate region is directly laterally adjacent the second substrate side edge. The second substrate region is located between the first and third substrate regions. At least one circuit trace is located on the selected substrate surface. The portion of the circuit trace in the first substrate region is made of only a first material. The portion of the circuit trace in the third substrate region is made of only a second material. The portion of the circuit trace in the second substrate region is made of both the first and second materials.
Abstract:
A fanout line structure of an array substrate includes first fanout lines arranged on a fanout area of the array substrate, and second fanout lines arranged on the fanout area of the array substrate. A second conducting film is arranged at a bottom of the second fanout line, a second capacitor is formed between the second conducting film and a first conducting film of the second fanout line, the second capacitor is used to reduce an impedance difference between the fanout lines. Capacitance value of the second capacitor is dependent on an overlapping area between the second conducting film and the first conducting film.
Abstract:
An electrical component provides a ceramic element located on or in a dielectric substrate between and in contact with a pair of electrical conductors, wherein the ceramic element includes one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.5 mol % throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides.