Abstract:
A PCB assembly can be attached to hold one or more such assemblies. A resilient PCB housing holds a PCB by an interference fit while conductive wires are inserted into its wire cavity so that exposed portions of conductive wires make electrical contact with electrical traces of the PCB which is biased b wire insulation. Two conductors can be held by the PCB housing which are forced into electrical contact with the PCB when it is inserted into the resilient PCB housing which then biases such contacts. A switch can also be held b a switch interference fit with the resilient PCB housing such that its leads are biased against the PCB by the resilient PCB housing.
Abstract:
A printed circuit board includes a motherboard and a daughterboard. The motherboard includes at least one first signal pad. The daughterboard includes at least one second signal pad electronically connected to the at least one first signal pad for electronically connecting the daughterboard to the motherboard.
Abstract:
The present disclosure is generally directed to illumination devices, and methods for making the same. The device, in particular, includes a first conductor layer, a first insulator layer disposed on the first conductor layer and having at least one first aperture defined therein through the first insulator layer, a second conductor layer disposed on the first insulator layer and having at least one second aperture defined therein through the second conductor layer and positioned to align with the at least one first aperture, and a light manipulation layer disposed on the second conductor layer and having at least one pair of apertures defined therein through the light manipulation layer including a third aperture and a fourth aperture, where the third aperture is positioned to align with the at least one second and first apertures.
Abstract:
An implantable medical device (IMD) having a hermetic housing formed from a case and a cover each having an exterior surface and an interior surface. An IMD component is mounted to the interior surface of the cover and has an electrical contact. A hybrid circuit is assembled in the case. The IMD component electrical contact is electrically coupled to the to the hybrid circuit assembled in the case.
Abstract:
A printed circuit board is disclosed. The printed circuit board comprises a substrate having a top surface and a bottom surface. A ground plane is on the bottom surface. A signal trace is on the top surface along a first direction. At least two isolated power planes are on the top surface adjacent to opposite sides of the signal trace, respectively. A conductive connection along a second direction couples to the two power planes, across the signal trace without electrically connecting to the signal trace, wherein the signal trace doesn't pass over any split of the ground plane.
Abstract:
A surface mount device jumper includes a base member and an electrode member. The base member is fabricated from a resin laminate. The electrode member is fabricated from an electrically-conductive material and is formed in a generally C-shaped configuration to define an opening therethrough. The opening is sized to receive the base member such that the electrode member partially wraps around and clamps to the base member to retain the base member in the opening.
Abstract:
An electronic component, including: a first terminal group including a plurality of functional terminals provided along a first side of the electronic component; a second terminal group including a plurality of functional terminals provided along a second side of the electronic component opposing the first side; and an element that is connected to at least one of the functional terminals of the first terminal group and to at least one of the functional terminals of the second terminal group. The first terminal group includes a first dummy terminal in at least one space between the functional terminals of the first terminal group; the second terminal group includes a second dummy terminal in at least one space between the functional terminals of the second terminal group; and the first and second dummy terminals are not connected to any element inside the electronic component.
Abstract:
A light emitting device array is provided comprising a printed circuit board on which a plurality of electrode patterns having the same width is formed, a light emitting device package disposed on a predetermined number of electrode patterns and a power supply line disposed on at least one of the remaining electrode pattern except for the predetermined number of electrode patterns.
Abstract:
A flexible printed wiring board includes a substrate, conductor wirings, a coverlay film, a jumper wiring, and through holes. The conductor wirings are disposed on a first surface of the substrate. The coverlay film covers at least part of the conductor wirings. The jumper wiring electrically connects the conductor wirings to each other. The through holes are formed in the substrate and respectively open to the surfaces of the conductor wirings. The jumper wiring is composed of a hardened material of a conductive paste and is formed so that a second surface of the substrate is continuous with respective surfaces of the conductor wirings which the through holes open.
Abstract:
A printed circuit board is disclosed. The printed circuit board comprises a substrate having a top surface and a bottom surface. A ground plane is on the bottom surface. A signal trace is on the top surface along a first direction. At least two isolated power planes are on the top surface adjacent to opposite sides of the signal trace, respectively. A conductive connection along a second direction couples to the two power planes, across the signal trace without electrically connecting to the signal trace, wherein the signal trace doesn't directly pass over any split of the ground plane.