Abstract:
A display device includes a display panel, a printed circuit board and a semiconductor device of a film carrier type which is disposed to lie between the liquid crystal display panel and the printed circuit board and is mounted on a film carrier. First terminals of the film carrier are connected by a first anisotropic conductive film to terminals of the printed circuit board and second terminals of the film carrier are connected to terminals of the display panel by a second anistropic conductive film.
Abstract:
An electronic device includes an electronic component (40), a first printed circuit board (PCB) (100) and a second printed circuit board (200). The electronic component includes a first pin (A1) and a second pin (A2). The first PCB and a second PCB, respectively including first conductor trace lines (102) and second conductor trace lines (108) for electrically connecting the first pin and the second pin. The first PCB is disposed above the second PCB, and is parallel with the second PCB. The first PCB is electrically connected to the second PCB via at least one of the first conductor trace lines and the second conductor trace lines. A surface area of the first PCB is smaller than that of the second PCB.
Abstract:
A method for repair soldering of multi-pole miniature plug connectors on printed circuit boards, having signal contact pins in the SMT design and shroud pins in the THR design. The plug connectors have shrouds whose shroud pins project out on the back of the printed circuit board. Preforms are glued onto the SMD signal contact pins, and the repair plug connectors are set into THR holes of the board with their shroud pins. The signal contact pins are soldered using SMT technology. Subsequently, the shroud pins are soldered from the back of the board. The solder connects with the solder eyes of the solder holes on the back of the board, as well as flows into the ring gap between the metallized inside walls of the solder holes and the shroud pins in the circuit board, and produces a material-lock connection. Finally, the shroud pins that project out are shortened.
Abstract:
The related arts have difficulty in efficiently dissipating the heat generated by a resin-molded semiconductor element, and thus have the problem of thermal stress causing damage to the semiconductor element. To solve the problem, a semiconductor device of the preferred embodiments includes common leads coupled to an island, and a part of the common leads projects out from a resin seal body. The projecting common leads have a coupling portion. When mounting the semiconductor device, the common leads are bridged with brazing material. Thus, the heat generated by an integrated circuit chip mounted on the island is dissipated through the common leads to the outside of the resin seal body. In the preferred embodiments of the invention, a further improvement in heat dissipation characteristics can be accomplished by increasing the surface areas of the common leads.
Abstract:
A liquid crystal display device which provides reliable connection between a semiconductor device and a printed circuit board includes a liquid crystal display panel, a printed circuit board disposed close to the liquid crystal display panel, and a semiconductor device of a film carrier type which is disposed to lie between the liquid crystal display panel and the printed circuit board, and terminals of the semiconductor device are respectively connected by an anisotropic conductive film to terminals of the printed circuit board that are disposed in opposition to the respective terminals of the semiconductor device.
Abstract:
An improved multi-chip module includes a main circuit board having an array of electrical interconnection pads to which are mounted a plurality of IC package units. Each IC package unit includes a pair of IC packages, both of which are mounted on opposite sides of a package carrier. The package units may be mounted on one or both sides of the main circuit board. A first primary embodiment of the invention employs a laminar package carrier having a pair of major planar surfaces. Each planar surface incorporates electrical contact pads. One IC package is surface mounted on each major planar surface, by interconnecting the leads of the package with the contact pads on the planar surface, to form the IC package unit. Several different variations of the chip module are disclosed.
Abstract:
A surface mount package is composed of a package body and first and second terminals. The package body has first and second surfaces intersecting with each other. Also, the package body has an installing portion for an element to be installed. The first terminal is connected to the first surface, and the second terminal is connected to the second surface.
Abstract:
An electronic assembly includes one or more conductive clamps (302, 304, FIG. 3), which are used to supply current to an integrated circuit (IC) package (308). The conductive clamps are attached to a printed circuit (PC) board (312), which supplies the current to the IC package over one clamp, and receives returned current from the IC package over another clamp. Each clamp contacts a contact pad (330) on the surface of the PC board, and contacts another contact pad (334) on the top surface of the IC package. Vias (338, 339) and conductive planes (340, 342) within the package then carry current to and from an IC (e.g., IC 306) connected to the package. In another embodiment, the clamp (904, FIG. 9) holds a conductive structure (902) in place between the PC board contact pad (908) and the IC package contact pad (914), and current is carried primarily over the conductive structure, rather than over the clamp.