OPTOELECTRONIC DEVICE
    61.
    发明申请

    公开(公告)号:US20220262849A1

    公开(公告)日:2022-08-18

    申请号:US17733262

    申请日:2022-04-29

    Abstract: An optoelectronic device comprises an epitaxial stack, comprising a first semiconductor layer, an active layer, and a second semiconductor layer; a trench exposing a portion of the first semiconductor layer; a first insulating layer formed on a side wall of the trench to electrically insulate from the active layer and the second semiconductor layer; a first electrode formed on the trench; a second electrode formed on the second semiconductor layer; a supporting device covering the epitaxial stack; an optical layer covering the first electrode and the second electrode, comprising a plurality of openings corresponding to positions of the first electrodes and the second electrodes; a fifth electrode electrically connected with the first electrode; and a sixth electrode electrically connected with the second electrode, wherein the fifth electrode and the sixth electrode each comprises a side comprising a length longer that of an edge of the epitaxial stack.

    Method and structure for die bonding using energy beam

    公开(公告)号:US11362060B2

    公开(公告)日:2022-06-14

    申请号:US16551764

    申请日:2019-08-27

    Abstract: Disclosed is a die-bonding method which provides a target substrate having a circuit structure with multiple electrical contacts and multiple semiconductor elements each semiconductor element having a pair of electrodes, arranges the multiple semiconductor elements on the target substrate with the pair of electrodes of each semiconductor element aligned with two corresponding electrical contacts of the target substrate, and applies at least one energy beam to join and electrically connect the at least one pair of electrodes of every at least one of the multiple semiconductor elements and the corresponding electrical contacts aligned therewith in a heating cycle by heat carried by the at least one energy beam in the heating cycle. The die-bonding method delivers scattering heated dots over the target substrate to avoid warpage of PCB and ensures high bonding strength between the semiconductor elements and the circuit structure of the target substrate.

    Semiconductor Device
    64.
    发明申请

    公开(公告)号:US20220173292A1

    公开(公告)日:2022-06-02

    申请号:US17456858

    申请日:2021-11-29

    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes an epitaxial stack including a mesa region and a lower region; a first pad on the lower region and a second pad on the mesa region; a first contact between the epitaxial stack and the first pad; a passivation structure covering the epitaxial stack and including a first opening; and a first metal structure in the first opening and disposed between the first contact and the first pad; wherein the first metal structure includes a first top surface away from the epitaxial stack, and the passivation structure including a second top surface at a position corresponding to the lower region and away from the epitaxial stack, and a first height difference between the first top surface and the second top surface is less than 3 μm and larger than zero; and wherein the first metal structure includes a first width adjacent to the first contact and a second width adjacent to the first pad, and the second width is larger than the first width.

    Light-emitting device
    65.
    发明授权

    公开(公告)号:US11349047B2

    公开(公告)日:2022-05-31

    申请号:US17114012

    申请日:2020-12-07

    Abstract: This disclosure discloses a light-emitting device. The light-emitting device includes a light-emitting stack having a first-type semiconductor layer, a second-type semiconductor layer, and an active layer formed between the first-type semiconductor layer and the second-type semiconductor layer; and a reflective structure formed on the first-type semiconductor layer and having a first interface and a second interface. A critical angle at the first interface for a light emitted from the light-emitting stack is larger than that at the second interface. The reflective structure electrically connects to the first-type semiconductor layer at the first interface, and an area of the first interface is more than an area of the second interface in a top view.

    SEMICONDUCTOR STRUCTURE
    67.
    发明申请

    公开(公告)号:US20220102582A1

    公开(公告)日:2022-03-31

    申请号:US17550449

    申请日:2021-12-14

    Abstract: A semiconductor structure includes a carrier, a bonding structure, a semiconductor stack, a supporting element and a bridge layer. The bonding structure is on the carrier and has an upper surface. The semiconductor stack is on the bonding structure. The supporting element is on the bonding structure and has a side wall. The bridge layer has a first portion directly connected to the supporting element, a second portion connected to the first portion and a third portion connected to the second portion. The second portion and the third portion of the bridge layer are suspended above the upper surface of the bonding structure. The first portion of the bridge layer directly contacts the side wall of the supporting element.

    Light-emitting device with distributed Bragg reflection structure

    公开(公告)号:US11251340B2

    公开(公告)日:2022-02-15

    申请号:US16749536

    申请日:2020-01-22

    Abstract: A light-emitting device includes a substrate, having a first surface and second surface opposite to the first surface; a light-emitting stack, formed on the first surface of the substrate, the light-emitting stack including a first semiconductor layer, an active layer and a second semiconductor layer, wherein the active layer is formed between the first conductive semiconductor layer and the second conductive semiconductor layer; and a distributed Bragg reflection structure (DBR), formed on the second surface of the substrate, including a plurality of dielectric-layer pair formed sequentially on the second surface, wherein each of the dielectric-layer pairs includes respectively a first dielectric layer having a first optical thickness and a second dielectric layer having a second optical thickness, and wherein from the second surface, the first dielectric layer of each of the dielectric-layer pairs is thicker than the first dielectric layer of the adjacent previous dielectric-layer pair.

Patent Agency Ranking