Abstract:
Method and system are provided for mobile distribution of content received via satellite signals. A satellite reception assembly may comprise a receive module and a basestation module. The receive module may receive satellite signals, process the received satellite signals to recover data carried therein, determine when the recovered data comprises a portion for local wireless broadcast by the system, and if so generate broadcast signals for carrying the portion of recovered data. The basestation module may transmit the generated broadcast signals, particularly to a mobile device of a satellite subscriber authorized to receive and access the data carried in the satellite signals. The recovered data may comprise web-based content.
Abstract:
In a first configuration, circuitry of a fiber node may be configured to modulate an optical carrier by an analog upstream electrical signal received via the electrical network. In a second configuration, the circuitry may be configured to digitize the analog upstream electrical signal to generate a digitized upstream signal, and modulate the optical carrier with the digitized upstream signal. An optical receiver of the fiber node may be configured to convert a downstream optical signal to a downstream electrical signal. In the first configuration, the downstream electrical signal may be a first analog signal and the circuitry may be configured to output the first analog signal into the electrical network. In a third configuration, the downstream electrical signal is a digitized waveform and the circuitry is configured to convert the digitized waveform to a second analog signal and output the second analog signal into the electrical network.
Abstract:
A cable modem termination system (CMTS) may determine, for a plurality of cable modems served by the CMTS, a corresponding plurality of SNR-related metrics. The CMTS may assigning the modems among a plurality of service groups based on the SNR-related metrics. For any one of the modems, the CMTS may configure physical layer communication parameters to be used by the one of the modems based on a SNR-related metric of a service group to which the one of the modems is assigned. The physical layer communication parameters may include one or more of: transmit power, receive sensitivity, timeslot duration, modulation type, modulation order, forward error correction (FEC) type, and FEC code rate. The CMTS and the modems may communicate using orthogonal frequency division multiplexing (OFDM) over a plurality of subcarriers, and the physical layer communication parameters may be determined on a per-subcarrier basis.
Abstract:
A radar transmitter comprises orthogonal frequency division multiplexing (OFDM) symbol generation circuitry, windowing circuitry, and control circuitry. The OFDM symbol generation circuitry is operable to modulate data onto a plurality of subcarriers to generate a plurality of OFDM symbols. The windowing circuitry is configurable to support a plurality of windowing functions. The control circuitry is operable to analyze returns from a previous transmission of the radar transmitter to determine characteristics of the environment into which the previous transmission was transmitted. The control circuitry is operable to select which one of the plurality of windowing functions the windowing circuitry is to apply to each of the plurality of OFDM symbols based on the characteristics of the environment. A first one of the windowing functions may correspond to a first radiation pattern and the second one of the windowing functions may correspond to a second radiation pattern.
Abstract:
Circuitry of a fiber node which is configured to couple to an optical link and an electrical link may comprise an electrical-to-optical conversion circuit for transmitting on the optical link. The circuitry may be operable to receive signals via the optical link. The circuitry may select between or among different configurations of the electrical-to-optical conversion circuit based on the signals received via the optical link. The signals received via the optical link may be intended for one or more gateways served by the fiber node or may be dedicated signals intended for configuration of the circuitry. The circuitry may be operable to generate feedback and insert the feedback into a datastream received from one or more gateways via the electrical link prior to transmitting the datastream onto the optical link.
Abstract:
Methods and systems for precise temperature and timebase PPM error estimation using multiple timebases may comprise in an electronic device comprising a plurality of timebases and measuring a temperature corresponding to the timebases. Frequencies of the timebases at the measured temperature may be compared to determine differential error functions for the timebases. A fine reading of the temperature corresponding to the timebases may be generated based, at least in part, on the measured temperature and the determined differential error functions for the timebases. The timebases may be calibrated utilizing the generated fine reading of the temperature. The timebases may comprise different order temperature dependencies. Models of temperature dependencies of each of the timebases based may be updated, at least in part, on the fine reading of the temperature. A global navigation satellite system (GNSS) clock signal may be periodically utilized to improve the accuracy of the calibration of the timebases.
Abstract:
An Internet protocol low noise block downconverter (IP LNB), which may be within a satellite reception assembly, may be operable to determine location information and time information of the IP LNB, and may communicate the determined location information and the corresponding time information to a wireless communication device communicatively coupled to the IP LNB. The communicated location information may be configured to enable the wireless communication device to determine its location based on the determined location information and the corresponding time information. The IP LNB may determine the location information and/or the time information of the IP LNB based on global navigation satellite system (GNSS) signals, which may be received via the satellite reception assembly and may be processed via the IP LNB. The IP LNB may provide services based on the determined location information and/or the determined time information of the IP LNB.
Abstract translation:可以在卫星接收组件内的因特网协议低噪声块下变频器(IP LNB)可以用于确定IP LNB的位置信息和时间信息,并且可以将确定的位置信息和相应的时间信息传送到 无线通信设备通信地耦合到IP LNB。 所传送的位置信息可以被配置为使得无线通信设备能够基于所确定的位置信息和对应的时间信息来确定其位置。 IP LNB可以基于可以经由卫星接收组件接收的全球导航卫星系统(GNSS)信号来确定IP LNB的位置信息和/或时间信息,并且可以经由IP LNB来处理。 IP LNB可以基于所确定的位置信息和/或所确定的IP LNB的时间信息来提供服务。
Abstract:
Receiver architectures and methods of processing harmonic rich input signals employing harmonic suppression mixers are disclosed herein. The disclosed receivers, mixers, and methods enable a receiver to achieve the advantages of switching mixers while greatly reducing the mixer response to the undesired harmonics. A harmonic mixer can include a plurality of mixers coupled to an input signal. A plurality of phases of a local oscillator signal can be generated from a single local oscillator output. Each of the phases can be used to drive an input of one of the mixers. The mixer outputs can be combined to generate a frequency converted output that has harmonic rejection.
Abstract:
A satellite dish assembly may comprise a broadcast receive module and a basestation module. The broadcast receive module may be operable to receive a satellite signal, recover media carried in the satellite signal, and output the media. The basestation module may be operable to accept the media output by the broadcast receive module and transmit the media in accordance with one or more wireless protocols. In being conveyed from the broadcast receive module to the basestation, the media content may not traverse any wide area network connection. The one or more wireless protocols may comprise one or more of: a cellular protocol and IEEE 802.11 protocol. The satellite dish assembly may comprise a routing module that may be operable to route data between the broadcast receive module, the basestation, and a gateway.
Abstract:
A network device may receive a signal from a headend, wherein a bandwidth of the received signal spans from a low frequency to a high frequency and encompasses a plurality of sub-bands. The network device may determine, based on communication with the headend, whether one of more of the sub-bands residing above a threshold frequency are available for carrying downstream data from the headend to the circuitry. The network device may digitize the signal using an ADC operating at a sampling frequency. The sampling frequency may be configured based on a result of the determining. When the sub-band(s) are available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively high frequency. When the sub-band(s) are not available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively low frequency.