Abstract:
An object of the present invention is to provide a graft pattern-forming method giving a graft pattern allowing formation of a high-resolution pattern that has an oil- and water-repellent region in a commonly-used exposure machine, a lithography method of using the oil- and water-repellent graft pattern formed by the method as an etching stopper, and a conductive pattern-forming method, a color filter forming method, and a microlens production process by using the graft pattern formed by the graft pattern-forming method. The graft pattern-forming method comprises forming a graft polymer-generated region and a non-generated region thereon by bonding a compound having a photopolymerization-initiating site that initiates radical polymerization by photocleavage radical polymerization and a base material-bonding site onto a base material surface in a patterned form, and additionally, by bringing the radically polymerizable compound having an oil- and water-repellent functional group into contact therewith and exposing the entire surface to light, or alternatively, bonding the compound having a polymerization-initiating site that initiates radical polymerization by photocleavage and a base material-bonding site to the base material, bringing a radically polymerizable compound having an oil- and water-repellent functional group into contact therewith, and exposing the region in a patterned form.
Abstract:
A scanning probe based method to selectively remove self-assembled organic molecules from their self-assembled monolayer (SAM) prepared on a conducting/semiconducting substrate having a hydrophilic surface. This technique involves the use of a conductive probe tip scanning a SAM with a thickness of not more than a few nanometers under an electric field applied by the scanning tip with a field strength of about 109 V/m between the tip and the surface of the conducting/semiconducting substrate. The patterned SAM can be used a device mould for the development of a nano-lithography technology or a device element in the fabrication of a nano-device. The present invention accommodates the trend of ever-decreasing size of devices.
Abstract translation:一种基于扫描探针的方法,用于从其具有亲水表面的导电/半导体衬底上制备的自组装单层(SAM)选择性去除自组装的有机分子。 该技术涉及使用在扫描尖端施加的电场强度为约10V / m 2的扫描SAM的厚度不超过几纳米的导电探针尖端 在导电/半导体衬底的尖端和表面之间。 图案化的SAM可以用于在纳米器件的制造中开发纳米光刻技术或器件元件的器件模具。 本发明适应装置尺寸不断减小的趋势。
Abstract:
A method for nano-scale high resolution patterning of self-assembled monolayer using soft X-rays is provided. The method involves forming an aromatic imine molecular layer having substituents at its terminal rings on a substrate, selectively cleaving bonds to the subsituents of the aromatic imine molecular layer, and hydrolyzing the aromatic imine molecular layer. 1
Abstract:
An optical scanning device, which is a MEMS element, includes a first insulating layer, a first semiconductor layer, a second insulating layer, and a second semiconductor layer that are laminated in this order, a first doped region formed at an interface between the first insulating layer and the first semiconductor layer, a second doped region formed at an interface between the first semiconductor layer and the second insulating layer, and a first wiring portion and a second wiring portion disposed on the first insulating layer apart from each other. The first doped region and the second doped region are electrically connected in parallel between the first wiring portion and the second wiring portion.
Abstract:
A method for producing a micromechanical device. The method includes: providing a MEMS substrate having micromechanical functional layers bounding a cavity; structuring an oxide layer to form an oxide mask having at least one first recess having a first diameter; applying a resist mask to the oxide mask and the first recess; introducing a second recess into the resist mask in the area of the first recess, the second diameter being smaller than the first diameter; introducing a first trench into the MEMS substrate through the second recess; removing the resist mask; introducing a second trench into the MEMS substrate through the first recess and simultaneously deepening the first trench at least through the micromechanical substrate; adjusting a desired gas composition at a desired pressure in the cavity; sealing the first trench using a melt plug by melting substrate material of the MEMS substrate that surrounds the first trench.
Abstract:
A MEMS device is provided. The MEMS device includes a substrate having at least one contact, a first dielectric layer disposed on the substrate, at least one metal layer disposed on the first dielectric layer, a second dielectric layer disposed on the first dielectric layer and the metal layer and having a recess structure, and a structure layer disposed on the second dielectric layer and having an opening. The opening is disposed on and corresponds to the recess structure, and the cross-sectional area at the bottom of the opening is smaller than the cross-sectional area at the top of the recess structure. The MEMS device also includes a sealing layer, and at least a portion of the sealing layer is disposed in the opening and the recess structure. The second dielectric layer, the structure layer, and the sealing layer define a chamber.
Abstract:
A microfluidic chip and a fabrication method of the microfluidic chip are provided. The microfluidic chip includes an array substrate, and a hydrophobic layer disposed on a side of the array substrate. The hydrophobic layer includes at least one through-hole, and a through-hole of the at least one through-hole penetrates through the hydrophobic layer along a direction perpendicular to a plane of the array substrate. The microfluidic chip also includes at least one hydrophilic structure. A hydrophilic structure of the at least one hydrophilic structure is disposed in the through-hole.
Abstract:
A MEMS device includes a first structure including at least one first bump over a surface of the first structure, a second structure including a first side facing the surface of the first bump and a second side opposite to the first side, and a gap between the first structure and the second structure. The first structure and the second structure are configured to move in relation to each other. The first bump includes a plurality of first teeth over a stop surface of the first bump.
Abstract:
In described examples, a hermetic package of a microelectromechanical system (MEMS) structure includes a substrate having a surface with a MEMS structure of a first height. The substrate is hermetically sealed to a cap forming a cavity over the MEMS structure. The cap is attached to the substrate surface by a vertical stack of metal layers adhering to the substrate surface and to the cap. The stack has a continuous outline surrounding the MEMS structure while spaced from the MEMS structure by a distance. The stack has: a first bottom metal seed film adhering to the substrate and a second bottom metal seed film adhering to the first bottom metal seed film; and a first top metal seed film adhering to the cap and a second top metal seed film adhering to the first top metal seed film.
Abstract:
A method of manufacturing a plurality of through-holes in a layer of first material, for example for the manufacturing of a probe comprising a tip containing a channel. To manufacture the through-holes in a batch process, a layer of first material is deposited on a wafer comprising a plurality of pits a second layer is provided on the layer of first material, and the second layer is provided with a plurality of holes at central locations of the pits; using the second layer as a shadow mask when depositing a third layer at an angle, covering a part of the first material with said third material at the central locations, and etching the exposed parts of the first layer using the third layer as a protective layer.