Abstract:
A method and composition for identifying chemically tagged petroleum products can be achieved by adding one or more chemicals to a selected petroleum product wherein the chemical is immune to extraction from the petroleum product by conventional inexpensive absorbents, cannot be removed by extraction with acids, bases, or immiscible solvents, cannot be easily oxidized, reduced or reacted with common agents, is difficult to disguise by masking with other agents, has a low polarity, and has a boiling point in the range of the petroleum products the chemical is being added to. The presence of the chemical is determined by using ion mobility spectroscopy.
Abstract:
The invention concerns a composition for use in particular as odorant of a gas fuel, more particularly of natural gas, comprising: 0.1 to 49.9 particles by weight of at least one alkyl sulphur (I) of formula: R1—S—R2, wherein R1 and R2, identical or different, represent: an alkyl radical comprising 1 to 4 carbon atom; or R1 and R2 together with the sulfur atom to which they are bound represent a saturated or unsaturated ring including 3 to 5 carbon atoms, optionally substituted by a C1-C4 alkyl or C1-C4 alkenyl; 50 to 99.8 parts by weight of at least two alkyl acrylates (II) the alkyl radicals of which comprise 1 to 12 carbon atoms, preferably 1 to 8: 0.001 parts by weight of at least compound (III) inhibiting polymerization of the alkyl acrylates (II).
Abstract:
Fuels, especially hydrocarbon fuels, and lubricants, especially lubricating oils, contain a class of anti-corrosion, anti-wear, anti-fatigue, and extreme pressure additives that are derived from 1,3-dithiolane-2-thiones.
Abstract:
A method and composition for identifying chemically tagged petroleum products can be achieved by adding one or more chemicals to a selected petroleum product wherein the chemical is immune to extraction from the petroleum product by conventional inexpensive absorbents, cannot be removed by extraction with acids, bases, or immiscible solvents, cannot be easily oxidized, reduced or reacted with common agents, is difficult to disguise by masking with other agents, has a low polarity, and has a boiling point in the range of the petroleum products the chemical is being added to. The presence of the chemical is determined by using ion mobility spectroscopy.
Abstract:
A combustion modifier for an aqueous hydrocarbon fuel emulsion that reduces nitrogen oxides (NOx), hydrocarbons, carbon monoxide (CO) and particulate matter from the emissions of internal combustion engines. A class of combustion modifiers used in this invention contain nitrogen. The nitrogen-containing combustion modifiers are nitro compounds, hydroxylamines or salts thereof, nitrogen compounds having at least one strained ring group containing from 3 to 5 ring atoms, nitrites, nitramines and mixtures thereof. The non nitrogen-containing combustion modifier comprises compounds containing at least one strained ring compound.
Abstract:
Alkylated thianthrenes are high temperature stable lubricant fluids having excellent thermal stability, antiwear and load-carrying properties and excellent additive solubility as well as multifunctional additives for fuels.
Abstract:
Novel compounds of the general formula ##STR1## wherein each R.sub.1 is independently a tertiary alkyl group containing from 4 to about 8 carbon atoms and each of X, Y and Z is independently hydrogen or a hydrocarbon-based group, provided at least one of X, Y and Z is an aliphatic hydrocarbon group containing at least 7 carbon atoms, and wherein R.sub.1 is different from the at least one of X, Y and Z that is an aliphatic hydrocarbon group containing at least 7 carbon atoms, R.sub.2 is an alkylene or alkylidene group, and n is a number ranging from zero to about 4. Also disclosed are methods for preparing novel phenolic compounds, organic compositions, including lubricants based on oils of lubricating viscosity and fuels based on normally liquid fuels and additive concentrates containing the novel phenolic compounds of this invention.
Abstract:
This invention provides a method for imparting invisible markings for identification purposes to petroleum hydrocarbons by incorporating one or more infrared fluorescing compounds therein. Certain infrared fluorophores from the classes of squaraines (derived from squaric acid), phthalocyanines and naphthalocyanines are useful in providing invisibly marked petroleum hydrocarbons such as crude oil, lubricating oils, waxes, gas oil (furnace oil), diesel oil, kerosene and in particular gasoline. The near infrared fluorophores are added to the hydrocarbons at extremely low levels and are detected by exposing the marked hydrocarbon compositions to near infrared radiation having a wavelength in the 670-850 nm range and then detecting the emitted fluorescent light via near infrared light detection means.
Abstract:
Hydrogen sulfide evolution in a heavy hydrocarbon (such as a residual fuel oil) derived from a heavy crude oil (such as a API 8 gravity crude) is suppressed by contacting the hydrocarbon with a compound corresponding to the reaction product of a heterocyclic aldehyde (such as furfural) and an organic primary amine.