Abstract:
An optical emission spectroscopic (OES) instrument includes a spectrometer, a processor and an adjustable mask controlled by the processor. The adjustable mask defines a portion of an analytical gap imaged by the spectrometer. The instrument automatically adjusts the size and position of an opening in the mask, so the spectrometer images an optimal portion of plasma formed in the analytical gap, thereby improving signal and noise characteristics of the instrument, without requiring tedious and time-consuming manual adjustment of the mask during manufacture or use.
Abstract:
The present disclosure relates to focusing luminescent concentrators wherein directional emission, obtained by placing an absorber/emitter within a microcavity or photonic crystal, may be oriented by a macroscopic concentrator and focused to a point or line for 3D or 2D concentration, respectively. The focusing luminescent concentrators disclosed herein may provide high concentration ratios without the need for tracking, and may reduce re-absorption losses associated with conventional concentrators. The present disclosure further relates to photovoltaic cells and/or optical detector devices comprising a focusing luminescent concentrator. The devices and methods presently disclosed are also useful, for example, in solar, thermal and thermophotovolatic applications.
Abstract:
In a total luminous flux measurement apparatus according to an embodiment, a total luminous flux emitted by an object is calculated based on a result of measuring illuminances using a measuring unit when providing relative movement between the object and an integrating unit to expose a substantially entire light emitting surface of the object to an inner space of the integrating unit. Specifically, under conditions that the object is disposed to penetrate the integrating unit from one sample hole to the other sample hole, a luminous flux of a portion of the object within the inner space of the integrating unit is measured, then the integrating unit is moved relative to the object, and a luminous flux of a portion accordingly contained in the inner space of the integrating unit is measured.
Abstract:
This invention is related to a light measuring apparatus and a method of using the device. It is used to measure various photometric quantities of the light emanating from a distant source of light.
Abstract:
In certain embodiments, a detection device includes a structure having an entrance that permits radiation to enter the structure and a radiation detector operable to detect radiation that enters the structure. The device also includes a microshutter array coupled to the structure and aligned with the entrance, the array comprising a plurality of microshutter cells operable to move between a first position in which that microshutter cell prevents radiation of a first wavelength from passing through a portion of the entrance and a second position in which that microshutter cell permits the radiation of the first wavelength to pass through the portion of the entrance. The device further includes an actuating device operable to define a first entrance pupil having a first f-number by moving a plurality of microshutter cells associated with the first f-number.
Abstract:
An optical radiation sensor system having: a housing having a distal portion for receiving radiation from the radiation source and a proximal portion; a sensor element in communication with the proximal portion, the sensor element configured to detect and respond to incident radiation received from the radiation source; and motive structure configured to move the housing with respect to the sensor element between at least a first position and a second position. A radiation pathway is defined between the radiation source and the sensor element when the housing is in at least one of the first position and the second position. Movement of the housing with respect to the sensor element causes a modification of intensity of radiation impinging on the sensor element.
Abstract:
An occupancy sensor is provided with a separable override unit which can selectively override the operation of the occupancy sensor at designated times and for selected time intervals. The occupancy sensor includes a light sensor for actuating the occupancy sensor and a light assembly when the ambient light is below a predetermined level and to deactivate the occupancy sensor when the ambient light is above a threshold level to prevent the light assembly from being actuated when the light level is sufficient to avoid the need for actuating the light assembly. The override unit is removably attached to the occupancy sensor and is provided with a light source, such as an LED. The override unit is coupled to the occupancy sensor to emit light to actuate the light sensor of the occupancy sensor, thereby controlling the operation of the occupancy sensor, such as by preventing the occupancy sensor from being actuated regardless of the light level in the surrounding areas. The occupancy sensor includes a cavity on a top surface for receiving the override unit. The light sensor of the occupancy sensor is positioned in the cavity. The LED on the override unit is on an end that is inserted into the cavity to align with the light sensor. A control unit is operatively connected to one or more override units for selectively controlling the normal operation of the occupancy sensor.
Abstract:
An apparatus adapted for con focal imaging of a non-flat specimen comprising a coherent light source for producing a light beam, imaging optics adapted to focus the light beam into at least one spot on a surface of a specimen, and a detector adapted to receive and detect light reflected from the specimen surface. The imaging optics comprise at last one optical component located so that the light reflected from the specimen surface passes therethrough on its way to the detector. The optical component is movable so as to move the at least one spot, within a range of movement, to a number of distinct locations in a plane perpendicular to the apparatus' optical axis, within the detector's integration time.
Abstract:
An optical radiation sensor system having: a housing having a distal portion for receiving radiation from the radiation source and a proximal portion; a sensor element in communication with the proximal portion, the sensor element configured to detect and respond to incident radiation received from the radiation source; and motive structure configured to move the housing with respect to the sensor element between at least a first position and a second position. A radiation pathway is defined between the radiation source and the sensor element when the housing is in at least one of the first position and the second position. Movement of the housing with respect to the sensor element causes a modification of intensity of radiation impinging on the sensor element.
Abstract:
Disclosed is a slit width adjusting device comprising: a pair of slit members parallel to each other, which is moved to approach each other or to be separated from each other to adjust a slit width; a driving section to move the pair of slit members; an absolute position original point detection section to detect an arbitrary absolute position of the slit members as an original point; and an adjustment section to adjust the slit width, wherein the adjustment section comprises: a storage unit to store a slit width table in which a displacement amount of the slit width from the original point, and a drive instruction value corresponding to the displacement amount, are corresponding to each other; and a drive control unit to extract the drive instruction value corresponding to a specified slit width, to drive the driving section according to the extracted drive instruction value.