Abstract:
A tooth shade analyzing system and method of use. The system includes a digital camera which connects to a shade analyzer subsystem, e.g., a digital video processor, and a color display monitor. The camera captures a digital color image of the patient's tooth and the subsystem compares that image to a stored plurality of tooth shades. Each tooth shade is represented in a block of data, including color image data, a tooth shade digital word, and a manufacturer type. The patient's tooth image includes an RGB chromaticity representation that is scanned and compared with the several tooth shades stored in memory, and a match is determined and communicated to a user of the system. The method of use includes the specification of fractional tooth shades, if needed, corresponding to a plurality of porcelain films for manufacturing a reconstructed tooth.
Abstract:
An intraoral camera connects to a shade analyzer subsystem, e.g., a digital video processor, and a color display monitor. The camera captures a digital color image of the patient's tooth and the subsystem compares that image to a stored plurality of tooth shades. Each tooth shade is represented in a block of data, including color image data, a tooth shade digital word, and a manufacturer type. The patient's tooth image includes an RGB chromaticity representation that is scanned and compared with the several tooth shades stored in memory, and a match is determined and communicated to a user of the system. The methodology includes the specification of fractional tooth shades, if needed, corresponding to a plurality of porcelain films for manufacturing a reconstructed tooth.
Abstract:
Color measuring systems and methods are disclosed. Perimeter receiver fiber optics are spaced apart from a central source fiber optic and receive light reflected from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
A dental color mixture indicator device is described.In an embodiment, the dental color mixture indicator device (420) comprises four component indicator devices (400-403) each retained by a common base (410). Each component indicator device (400-403) has an array of color samples (Y1-2,C1-3,R1-2) mounted to individual blades (430,440-442,450-452,460-462), with each group of blades able to be plucked from the base (410) for the purposes of a comparison with a tooth. Each color sample (Y1-2,C1-3,R1-2) corresponds with an artificial tooth material, and, on the basis of the comparison, a mixture of the respective tooth materials allows correct color matching of a restorative tooth.The arrayed color samples (Y1-2,C1-3,R1-2), coincide with a corresponding location on a color co-ordinate system. The central colors (201) of each component indicator device (400-403) are offset from other ones of central colors with respect to the color co-ordinate system. This means a fewer number of samples are required than in the prior art to encompass the whole body of tooth color.
Abstract:
A method of computerized color matching for articles where articles are photographed, using a still video camera, against a set of reference colors. The photographs are stored on a diskette (34) which is read on a recorder (54). The computer (55) compares the set of reference colors against an absolute set of colors and generates a compensation factor which is applied to the photographed colors to produce a corrected photograph. Areas of the corrected photograph may be selected for computer enhancement and a computer generated map may be produced to enable the color of other articles to be matched to the photographed articles.
Abstract:
Polychromatic light is directed at the surface of a live tooth and color data of light reflected therefrom is recorded, multiplied by the stored power distribution of a first standard illuminant and converted to three tristimulus values. Such values are compared with color values of a first group of stored color dental shades, and if a match occurs within a given tolerance, an indication of the nature of the recipe is produced. A second level search may be carried out against a substantially larger group of stored dental shades in the event of a no-match condition resulting from the first search. Excellent lifelike reproduction of the patient's tooth is enhanced by checking for least metamerism by operating upon the measured data with other illumination standards and selecting the best match under all lighting conditions. Additionally, a translucency factor is calculated, and employed to reduce the opacity of the inner opaque layer of the recipe which would otherwise be indicated should the patient's tooth not have a high degree of translucency. The calculation of a fluorescence factor also enhances excellent reproduction of the live tooth, and is employed to indicate the addition of a fluorescent ingredient to the final recipe.
Abstract:
A nondestructive method of and apparatus for optically detecting the presence of and inferentially determining the relative degree of anomalous subsurface structure in translucent articles: for instance, such anomalous subsurface structural phenomena as pre-carious lesions in in vivo teeth. Moreover, dynamic changes in the degree of such anomalous subsurface structure can be identified and relatively quantified. Thus, for instance, progressive subsurface deterioration of teeth can be monitored, and the efficacy of products directed towards arresting or reversing the development of pre-carious lesions in teeth can be evaluated through the use of the present invention. The method and apparatus of the present invention provide for illuminating a surface area of a translucent article with incident light, and detecting whether a sufficient portion of the light is internally diverted by being refracted or diffusely reflected or the like by the internal structure of the article to indicate whether the subsurface structure of the article is anomalous. Both in vivo and in vitro apparatuses are disclosed. Several species of hand-held probes for such applications as dental examinations are also disclosed. Manipulation of the hand-held probes is facilitated by flexible fiber optic cables. The apparatus may include closed circuit video and automatic data processing equipment to facilitate the use of the apparatus, and to facilitate the reduction and interpretation of the data derived from operating the apparatus. As used herein, the term light is not intended to be limited to the visible spectrum.
Abstract:
A method is provided for providing a set of ingredients for manufacturing of a dental prosthesis covering. The method comprises receiving a background colour value providing information on a colour of a background substrate on which the prosthesis is to be provided, receiving an appearance colour value providing information on an appearance colour of the prosthesis and receiving a thickness value providing information on a thickness of the dental prosthesis covering. In an electronic memory, a first ingredient record is looked up comprising first ingredient value, based on the measured background value and the measured appearance colour value. The first ingredient values are adjusted in an electronic processor adjusted based on the thickness value and through electronic output means, the adjusted ingredient data is provided. By adjusting ingredients for thickness, a more natural appearance may be achieved.
Abstract:
Disclosed in a method, a user interface and a system for use in determining shade of a patient's tooth, wherein a digital 3D representation including shape data and texture data for the tooth is obtained. A tooth shade value for at least one point on the tooth is determined based on the texture data of the corresponding point of the digital 3D representation and on known texture values of one or more reference tooth shade values.