Abstract:
It is an object of the present invention to provide a surface-treated copper foil wherein a surface layer which is situated on a side being not bonded to a resin in a copper foil for a printed-wiring board and on which a copper direct drilling process by carbon dioxide laser is easily applied is prepared with a small amount of a covering material in accordance with a simple manner. In the copper foil used for a direct drilling process by laser of the present invention, 50 to 1000 mg/m2of a covering layer consisting of iron and tin, or a covering layer made of an alloy prepared from iron, tin, and at least one member selected from the group consisting of nickel, cobalt, zinc, chromium, and phosphorous is provided on at least one side of the copper foil.
Abstract translation:本发明的目的是提供一种表面处理铜箔,其中位于不与印刷电路板的铜箔中的树脂结合的一侧的表面层,并且在其上进行铜直接钻孔工艺 通过二氧化碳激光容易地涂敷,按照简单的方式用少量的覆盖材料制备。 在用于本发明的激光的直接钻孔工艺的铜箔中,由铁和锡组成的覆盖层为50〜1000mg / m 2,或由铁,锡, 并且在铜箔的至少一面上设置选自镍,钴,锌,铬和磷中的至少一种。
Abstract:
The object is to provide carrier foil-incorporated copper foil which permits drilling by a carbon dioxide laser when on the surface of outer-layer copper foil of a copper-clad laminate there is no nickel assist metal layer or an organic material film to increase the absorption of laser light. For this purpose, there is used, for example, carrier foil-incorporated copper foil in which copper foil for printed wiring board manufacturing having a nodular-treated surface on the side of one surface of a bulk copper layer and carrier foil are laminated via an adhesive interface layer on a side opposite to the nodular-treated surface of the bulk copper layer, the bulk copper layer being formed from a high-carbon copper with a carbon content of 0.03 wt % to 0.40 wt %.
Abstract:
An epoxy based resin which exhibits good laser ablation and good adherence to a substrate such a copper is provided by adding to the resin a dye or dyes having substantial energy absorption at the emission wave lengths of lasers used to laser ablate the resin. The resin with the dye or dyes included is coated onto a substrate and cured, or laminated onto a substrate in the cured condition. The required openings are formed in the cured film by laser ablation. This allows for the use of optimum techniques to be used to form micro vias.
Abstract:
Removable mask films 303 are formed on the both sides of the substrate having the adhesive layer 302 by applying and drying a resin varnish 304 including a ultraviolet-absorbing agent, and fine through holes 306 are formed by using a third harmonics YAG solid-state laser light with a relatively short wavelength not longer than that in the ultraviolet range in such a way that the effects of such a residual strain as the conventional embodiment forming a removable mask film by a laminating process may be decreased as well as the more fine hole drilling compared with conventional embodiment using the carbon dioxide gas laser with a relatively long wavelength may be performed.
Abstract:
Removable mask films 303 are formed on the both sides of the substrate having the adhesive layer 302 by applying and drying a resin varnish 304 including a ultraviolet-absorbing agent, and fine through holes 306 are formed by using a third harmonics YAG solid-state laser light with a relatively short wavelength not longer than that in the ultraviolet range in such a way that the effects of such a residual strain as the conventional embodiment forming a removable mask film by a laminating process may be decreased as well as the more fine hole drilling compared with conventional embodiment using the carbon dioxide gas laser with a relatively long wavelength may be performed.
Abstract:
This disclosure describes a method for the solderless electrical connection of two contact elements by using a laser light beam attached to a fiber optic system which directs the light to the spot to be bonded. By using a fiber optic system the laser beam is optimally converted into thermal energy and bad connections due to underheating or destruction of the contacts due to overheating does not occur. The method and apparatus provides rapid, reproducible bonding even for the smallest of contact geometries. For example, the method of the invention results in solderless gold to gold compression bonding of conductive leads contained in a polymer flex circuit tape, such as a polyimide, without damaging the tape. A strong solderless gold to gold bond can be formed between the gold plated copper lead on the flex circuit tape and a gold plated pad on a semiconductor chip without the need for a window in the flex circuit and without any damage to the tape. In the application of the present invention to the bonding of conductive leads on a TAB circuit to the silicon substrate of an inkjet printhead the need for a window in the TAB circuits is eliminated. The elimination of the window results in elimination of the need for an encapsulation material to cover the conductive leads in the TAB circuit. This in turn results in die size reduction, or increased number of nozzles with the same die size, ease of assembly, higher yields, improved reliability, ease of nozzle serviceability, and overall material and manufacturing cost reduction.
Abstract:
The disclosure describes a method for predicting and avoiding bad bonds or connections when performing electrical connection of two electrical conductors by using a laser light beam attached to an optical fiber system which directs the light to the spot to be bonded. The method provides for rapid detection of damaged optical fibers before bad bonds or connections occur. Disclosed is a method for predicting and avoiding bad bonds or connections when performing solderless electrical connection of two contact elements by using a laser light beam attached to a optical fiber system which directs the light to the spot to be bonded.
Abstract:
To form a hole for electrically connecting an upper conductor layer 11 of an insulating layer 10 of a printed wiring board 1 and a lower conductor layer 12 of the insulating layer 10 in the insulating layer 10 to expose the lower conductor layer 12 to the hole bottom, when laser processing is executed for making the hole 13 in the insulating layer 10 using the printed wiring board 1 comprising a treatment layer 14 being placed between the lower conductor layer 12 and the insulating layer 10 for emitting an electromagnetic wave having a wavelength different from the wavelength of processing laser during the laser processing, change in a signal emitted from the treatment layer 14 of the printed wiring board 1 is measured to determine the remaining state of the insulating layer 10. The electromagnetic wave emitted in laser processing from the treatment layer 14 placed between the lower conductor layer 12 and the insulating layer 10 rather than the reflection of laser of laser is used, so that the hole 13 piercing the insulating layer can be detected precisely.
Abstract:
An epoxy based resin which exhibits good laser ablation and good adherence to a substrate such a copper is provided by adding to the resin a dye or dyes having substantial energy absorption at the emission wave lengths of lasers used to laser ablate the resin. The resin with the dye or dyes included is coated onto a substrate and cured, or laminated onto a substrate in the cured condition. The required openings are formed in the cured film by laser ablation. This allows for the use of optimum techniques to be used to form micro vias.
Abstract:
A multi-layer wiring board where a plurality of wiring boards are laminated. The wiring board comprises a flexible insulating layer having a through hole and a wiring pattern formed on the flexible insulating layer. The wiring pattern is composed at least of two conductive layers. The first conductive layer formed on the insulating layer is made of a non-metallic conductor and the first wiring pattern is formed by a laser beam. The second conductive layer is an electroplated layer formed on the first wiring pattern. The first and second conductive layers have different reflectance for a beam. The wiring board is manufactured by integrally laminating a plastic conductive supporting plate wound in a roll shape and an insulating film similarly wound in a roll shape; forming a through hole in a predetermined position of the insulating film; forming the first conductive layer on the laminated body provided with the through hole; forming the first wiring pattern by a laser beam; and forming the electroplated layer on the first wiring pattern.