Abstract:
A multi-layer electronic circuit board design 10 having selectively formed apertures or cavities 26, and which includes grooves or troughs 20, 22 which are effective to selectively entrap liquefied adhesive material, thereby substantially preventing the adhesive material from entering the apertures 26.
Abstract:
A multilayer circuit board having air bridge crossover structures and an additive method for producing the same, wherein the circuit includes specially designed metallic fortifying layers to mechanically and/or electrically fortify the circuit.
Abstract:
A method for making a multi-layer electronic circuit board 136 having electroplated apertures 96, 98 which may be selectively and electrically isolated from an electrically grounded member 46 and further having selectively formed air bridges and/or crossover members 128 which are structurally supported by material 134.
Abstract:
A multi-layer circuit board with a thermoelectric or “Peltier” cooler and a method forming a multi-layer circuit board with a thermoelectric or “Peltier” cooler is disclosed. The circuit board includes a thermoelectric cooler which is integrally formed within the circuit board and which is effective to efficiently absorb and dissipate heat from the circuit board.
Abstract:
A method 10 for making a multi-layer electronic circuit board 98 having at least one electrically conductive protuberance 15 which forms a nullvianull and which traverses through the various layers of the electric circuit board 98, and further having at least one interconnection portion 102 which supports a wide variety of components and interconnection assemblies.
Abstract:
There is disclosed herein a tri-metal-layer precircuit 50 which may be selectively etched to provide a multilayer electronic circuit 60 having air bridge crossovers 49. The enlarged ends 44 of the upper air bridge elements 42, and/or the top pads 41 of the tower elements 43, are specially designed such that undercutting of the ends 44 and/or top pads 41 is minimized, thereby minimizing the risk of air bridge/top pad delamination.
Abstract:
There is disclosed herein a multilayer circuit board having air bridge crossover structures and a subtractive method for producing the same, wherein the circuit includes specially designed metallic fortifying layers which provide mechanical and/or electrical fortification to the circuit.
Abstract:
A multilayer circuit board having strengthened air bridge crossover structures, and additive and subtractive methods for producing the same, wherein the circuit includes specially designed metallic fortifying layers to mechanically and/or electrically fortify the circuit. A preferred embodiment includes air bridge structures having generally T-shaped cross-sections, which provide strengthened, mechanically robust air bridges which are especially resistant to damage from flexure and displacement due to physical impact, bending, thermal excursions, and the like.
Abstract:
The invention is an aluminum etchant and method for chemically milling aluminum from, according to a preferred embodiment, a copper-aluminum-copper tri-metal layer to form three-dimensional circuits. The tri-metal comprises copper circuit patterns present on opposing surfaces of an aluminum foil, one of the copper patterns being laminated on a substrate. The etchant comprises an aqueous solution of 60 to 500 g/l base selected from (a) sodium hydroxide, (b) potassium hydroxide, and (c) their mixture; and 30 to 500 g/l of an additive selected from nitrite salt, a borate salt, a bromate salt, or mixture of any of them. The method comprises contacting the tri-metal with the etchant at a temperature between 25 and 95° C. for a time sufficient to remove a desired amount of the aluminum layer and provide (rigid, flexible, or 3-dimensional) electronic circuitry which may contain multiple conductive circuit layers.
Abstract:
A wiring board for electrical tests; having an insulating substrate, wiring of predetermined pattern which is embedded in the insulating substrate, and bump electrodes which are formed on the wiring and which are respectively brought into contact with corresponding electrodes of an article to-be-tested. Thus, even when the electrode pitch of the article to-be-tested such as a semiconductor device has become smaller(for example, less than 0.1 [mm]), the electrodes can be formed so as to cope with the electrical tests of the article.