Abstract:
A flexible printed circuit board, configured to receive electronic components, comprising an electrically insulating flexible element, configured to bear conductive component-connecting tracks, the flexible element being further configured to be bent according to a curvature, the board further comprising an electrically insulating reinforcing element, mechanically secured to the flexible element, extending on one side of the curvature, and comprising two parts: a first part being substantially planar and a second part exhibiting a predefined curvature, arranged on the side of the curvature of the flexible element, the reinforcing element being arranged so as to leave a free part for the flexible element to be bent according to the curvature.
Abstract:
A chip package includes an optical integrated circuit (such as a hybrid integrated circuit) and an integrated circuit that are adjacent to each other on the same side of a substrate in the chip package. The integrated circuit includes electrical circuits, such as memory or a processor, and the optical integrated circuit communicates optical signals with very high bandwidth. In addition, an input/output (I/O) integrated circuit is coupled to the optical integrated circuit between the substrate and the optical integrated circuit. This I/O integrated circuit includes high-speed I/O circuits and energy-efficient driver and receiver circuits and communicates with optical devices on the optical integrated circuit. By integrating the optical integrated circuit, the integrated circuit and the I/O integrated circuit in close proximity, the chip package may facilitate improved performance compared to chip packages with electrical interconnects.
Abstract:
An assembly is provided of an electro-physical transducer (10) on a flexible foil (20) with a carrier (40). The flexible foil (20) has a first main surface (22) provided with at least a first electrically conductive track (24) connected to the electro-physical transducer and opposite said first main surface a second main surface (23) facing towards the carrier. At least a first incision (25a) extends through the flexible foil alongside said at least a first electrically conductive track, therewith defining a strip shaped portion (27) of the flexible foil that carries a portion of the at least a first electrically conductive track. The at least a first electrically conductive track is electrically connected to an electrical conductor (421) of the carrier, and the flexible foil is attached to the carrier with its strip shaped portion.
Abstract:
Provided is a printed circuit board, including: a support substrate including a first region in which light emitting elements are mount, a second region extending from the first region, and a bending portion between the first region and the second region, an insulating substrate on the support substrate, wiring portions on the insulating substrate, and a protective layer on the wiring portions.
Abstract:
A chip package includes an optical integrated circuit (such as a hybrid integrated circuit) and an integrated circuit that are adjacent to each other on the same side of a substrate in the chip package. The integrated circuit includes electrical circuits, such as memory or a processor, and the optical integrated circuit communicates optical signals with very high bandwidth. In addition, an input/output (I/O) integrated circuit is coupled to the optical integrated circuit between the substrate and the optical integrated circuit. This I/O integrated circuit includes high-speed I/O circuits and energy-efficient driver and receiver circuits and communicates with optical devices on the optical integrated circuit. By integrating the optical integrated circuit, the integrated circuit and the I/O integrated circuit in close proximity, the chip package may facilitate improved performance compared to chip packages with electrical interconnects.
Abstract:
An electronic component includes a flexible printed circuit board which has a main body, a fixing portion and a connecting portion, and an insulating portion integrally molded to the fixing portion. In the process of the insulating portion being molded to the fixing portion, a filling mold fixture is sleeved around and spaced from outsides of the fixing portion. A method of manufacturing the electronic component is described hereinafter. Sleeve the filling mold fixture around the fixing portion and apart from the outsides of the fixing portion. Place the flexible printed circuit board together with the filling mold fixture in a mold. Inject liquid rubber into the filling mold fixture. Close the mold. Cool the electronic component and the filling mold fixture. Open the mold to take out the electronic component and the filling mold fixture, and then separate the filling mold fixture from the electronic component smoothly.
Abstract:
A lighting system comprising a light box housing, a plurality of lighting units including a housing, a plurality of light emitting elements mounted on a PCB within the housing. The light emitting elements arranged on an angled surface such that the light emitting elements emit light in a sideways direction from the lighting units. The lighting units can also be interconnected in a daisy-chain configuration, such that the lighting units form a row of lighting units. The row of lighting units adapted to be mounted within the light box housing, wherein the light box housing comprises one or more rows of lighting units.
Abstract:
The present invention provides a method for surface decoration of a three-dimensional object with ease. In one embodiment of the invention, a planar construction article that is foldable into the object is utilized. In another embodiment of the invention, multiple angle plates that are assembled into the object are utilized. The surface decoration process is carried out before the planar construction article is folded or before the angle panels are assembled together thereby to significantly simplify the decoration process of object faces in different orientations. The invention also provides a three-dimensional object obtained from the methods of the invention.
Abstract:
An assembly of a plurality of tiles (1) with a carrier (40). The tiles (1) comprise a foil (20) with an electro-physical transducer (10) and electrical connectors (24, 28) to said transducer. The tiles are mechanically and electrically coupled to the carrier in a connection portion (1c) of said tiles.
Abstract:
An angled LED light module comprising at least two boards arranged at an angle relative to each other; and a plurality of LED bulbs mounted on the at least two boards, wherein the at least two boards and the plurality of LED bulbs form a single light source. In one aspect, the at least two boards are printed circuit boards. In one aspect, the angled LED light module comprises two stages.