Abstract:
According to one embodiment, a light-emitting device includes a substrate, a first light-emitting element group, a second light-emitting element group, and a terminal group. The first light-emitting element group includes plural first light-emitting elements mounted on the substrate. The second light-emitting element group is mounted on the substrate alongside the first light-emitting element group and includes plural second light-emitting elements. The terminal group includes plural terminals electrically connected to the first light-emitting element group and the second light-emitting element group, and is arranged on a side of the first light-emitting element group opposite to a side thereof facing the second light-emitting element group in a first direction in which the first light-emitting element group and the second light-emitting element group on the substrate are arranged side by side.
Abstract:
A semiconductor device includes a package board having a front side and a back side opposite to each other. A first memory device has data pins and is mounted on the front side of the package board, and a second memory device has data pins and is mounted on the back side of the package board. The data pins of the first and second memory devices have a same arrangement. A controller provides data signals to the first and second memory devices, with the same data signal provided from the controller to one data pin of the first memory device and one data pin of the second memory device.
Abstract:
An LED light bar includes LED chips and a printed circuit board. A number of welding pads are disposed on the printed circuit board, and correspondingly connected to anodes and cathodes of the LED chips respectively. The welding pads connected to the anodes of the LED chips are connected by wire lines for connecting an anode of an electrical power source. The welding pads connected to the cathodes of the LED chips are connected by the wire lines for connecting a cathode of the electrical power source. The resistance of the wire lines connected to the LED chips increases from one near the electrical power source to the one far from the electrical power source. The resistance of the welding pads connected to the LED chips decreases from one near the electrical power source to the one far from the electrical power source.
Abstract:
All interface pins for transmitting and receiving a signal having a predetermined function of a semiconductor integrated circuit element are formed on an outer periphery of the semiconductor integrated circuit element along one side of the semiconductor integrated circuit element. The one side of the semiconductor integrated circuit element is adjacent to two of sides of a BGA substrate, the two sides being not parallel to the one side. Of balls provided on the BGA substrate, balls electrically connected to the interface pins for transmitting and receiving a signal having a predetermined function are provided between the one side of the semiconductor integrated circuit element and the two sides of the BGA substrate.
Abstract:
Disclosed are methodologies for defining matched-impedance footprints on a substrate such as a printed circuit board, for example, that is adapted to receive an electrical component having an arrangement of terminal leads. Such a footprint may include an arrangement of electrically-conductive pads and an arrangement of electrically-conductive vias. The via arrangement may differ from the pad arrangement. The vias may be arranged to increase routing density, while limiting cross-talk and providing for matched impedance between the component and the substrate. The via arrangement may be altered to achieve a desired routing density on a layer of the board. Increasing the routing density may decrease the number of board layers, which tends to decrease capacitance and thereby increase impedance. Ground vias and signal vias may be arranged with respect to one another in such a manner as to affect impedance. Thus, the via arrangement may be altered to achieve an impedance that matches the impedance of the component. The via arrangement may be also be altered to limit cross-talk among neighboring signal conductors. Thus, the via arrangement may be defined to balance the impedance, cross-talk, and routing density requirements of the system.
Abstract:
The present invention discloses a tape substrate for chip on film structure of a liquid crystal panel. The tape substrate is provided with plural package units of chip on film structures arranged along its longitudinal direction, and the package unit has a driver chip, input leads and output leads. The longitudinal direction of the driver chip is parallel to the longitudinal direction of the tape substrate, and the input leads and the output leads are located at the two opposite sides of the driver chip. Each package unit is set up with a short side and a long side, and the input leads are formed at the short side, while the output leads are formed at the long side. In the package units adjacent to each other, the short side of one package unit joins the long side of a next package unit. This invention further discloses a liquid crystal panel having the tape substrate.
Abstract:
Disclosed is an electronic device module including a module substrate having first and second electronic device pair portions. The first electronic device pair portion may include a first and a second contact pad area and a first via area between the first and second contact pad areas. The first electronic device pair portion may also include a first layer and a second layer. The first layer may include a plurality of first lines connecting a plurality of contact pads in the first contact pad area on one side of the module substrate to a plurality of vias. The second layer may include a plurality of second lines connecting a plurality of contact pads in the second contact pad area to a plurality of vias in the via area. The second layer may also include a plurality of third lines connecting the first and second electronic device pair portions.
Abstract:
A memory module having reduced access granularity. The memory module includes a substrate having signal lines thereon that form a control path and first and second data paths, and further includes first and second memory devices coupled in common to the control path and coupled respectively to the first and second data paths. The first and second memory devices include control circuitry to receive respective first and second memory access commands via the control path and to effect concurrent data transfer on the first and second data paths in response to the first and second memory access commands.
Abstract:
Techniques for optimizing application specific integrated circuit (ASIC) and other IC pin assignment corresponding to a high density interconnect (HDI) printed circuit board (PCB) layout are provided. Applying the techniques described herein, pin assignments may be systematically and strategically planned, for example, in an effort to reduce the PCB layer count and associated cost, increase signal integrity and speed, reduce the surface area used by an ASIC and its support circuitry, reduce plane perforations, and reduce via crosstalk when compared to conventional designs with an ASIC mounted on a multilayered PCB.
Abstract:
A circuit board includes balls as electrodes in a grid, a power supply wiring pattern area connected to power supply terminals of an integrated circuit mounted thereon, and a feeding pattern area connected to a feeding point; the balls include first and second power supply ball groups connected respectively to power supply terminal arrays, at a predetermined interval, of the integrated circuit, and the power supply wiring pattern area includes first and second power supply connection patterns connected respectively to the first and second ball groups, and at least one connection pattern connecting the first and second power supply connection patterns noncontact to the balls, and has first and second connection portions connected respectively to the feeding pattern area and one electrode of a first bypass capacitor, and the second power supply connection pattern has a third connection portion connected to one electrode of a second bypass capacitor.