Abstract:
An electronic device includes a base body, which has a top side and also an underside lying opposite the top side. The base body has connection locations at its underside. An electronic component is arranged at the base body at the top side of the base body. The base body has at least one side area having at least one point of inspection having a first region and second region. The second region is embodied as an indentation in the first region. The first and the second region contain different materials.
Abstract:
A circuit module includes a substrate, a component land provided on the substrate, an electronic component bonded to the component land, a case land provided on the substrate, and a case bonded to the case land so as to cover the electronic component. The case includes a top plate, and a leg that extends from a peripheral edge of the top plate in a direction substantially perpendicular to the top plate and that includes a groove in an end surface thereof that is bonded to the case land.
Abstract:
A structure of a light emitting diode is provided. The light emitting diode comprises a light emitting diode die; two conductive frames electronically and respectively connecting to the cathode and anode of the light emitting diode die, and two substrates. Each conductive frame has a fixing hole and each substrate has a protrusive pillar. The upper opening of the fixing hole is broader than the bottom opening. The protrusive pillar is inserted into the fixing hole and the shape of the protrusive pillar is deformed for fitting and binding with the fixing hole.
Abstract:
A power semiconductor module includes a housing, terminal elements leading to the outside of the housing, an electrically insulated substrate arranged inside the housing, with the substrate being comprised of an insulating body and having on the first main face facing away from the base plate a plurality of connecting tracks electrically insulated from each other. The terminal and connecting elements are arranged on a connecting track in with contact faces contacting connecting tracks or power semiconductor components, with the individual contact faces having a plurality of partial contact faces. In one optional embodiment, each partial contact face has a maximum area of 20 mm2. In another embodiment, partial contact faces each are arranged at a distance of approximately 5 mm with regard to each other and the connection of the partial faces to the connecting tracks or the power semiconductor components is flush.
Abstract:
There are provided the steps of preparing a contact (10, 20), which is formed from a metallic sheet including a base portion (11, 21), an elastic deformation portion (12, 22), and a contact portion (13, 23), and in which a recess (15, 25) is formed on a bottom surface of the base portion and a plurality of through-holes (16, 26, 27) are formed to be arranged above the recess and in parallel to the bottom surface of the base portion to extend through the base portion, and holding solder on the through-holes formed on the contact. A desired, solder-attached contact (10a, 20a) is fabricated by the manufacturing method. Further, the solder is a solder ball (90) and the step of holding solder includes the step of preparing the solder ball and the step of press fitting the solder ball into the through-hole.
Abstract:
An electro-magnetic interference device attached to a surface of an object by soldering is disclosed. The device comprises a base comprising a surface defining at least one recessed portion. The at least one recessed portion comprises a side wall. An angle between the side wall and the surface of the base is equal to or greater than 90 degrees.
Abstract:
There may be provided a surface mounting component in which a shock with respect to constitution members thereof in a manufacturing process can be reduced and also, in which solder joining strength after the surface mounting is made to be adequate.At least a portion of an end surface, of an external terminal, of the surface mounting component which is joined with a mounting board is a cut surface formed by cutting off a connected member which is connected to the external terminal, in a manufacturing process of the surface mounting component, and on the external terminal, there is formed a concave portion recessed from the end surface.
Abstract:
In some embodiments, a surface mount component includes a housing and one or more leads extending from the housing, wherein the one or more leads define respective voids through respective ends of the one or more leads. For example, the one or more leads may define a through-hole at respective ends of the one or more leads. For example, the fixing material may include solder. For example, the solder may form a pin which helps secure the surface mount component to the printed circuit board. Other embodiments are disclosed and claimed.
Abstract:
A packaged semiconductor device (100) has a first (110) and a second (111) side, the second side including a plurality of metal terminals (120) extending to the first side. Each terminal includes an oblong groove (122) extending to the first side and ending in an orifice (123) at the first side. The terminals are made of a base metal and may have a solder-wettable surface except for the terminal surface (121) exposed at the first device side.
Abstract:
A sensor unit 10 is provided with a metal plate 20 and a resin molded article 30 is formed integral to the metal plate 20. Busbars 50 are arranged in the resin molded article 30 and include exposed end portions 52 exposed from the resin molded article 30. Connecting portions 52A are provided at the leading ends of the exposed end portions 52 and are riveted to an oil temperature sensor 41 on the metal plate 20. Opposite lateral sides of the exposed end portions 52 are partly in contact with the resin molded article 30.