Abstract:
A field emission device having a gate electrode structure in which a nanocrystalline or microcrystalline silicon layer is positioned over a silicon dioxide dielectric layer. Also disclosed are methods for forming the field emission device. The nanocrystalline or microcrystalline silicon layer forms a bond with the dielectric layer that is sufficiently strong to prevent delamination during a chemical-mechanical planarization operation that is conducted during formation of the field emission device. The nanocrystalline or microcrystalline silicon layer is deposited by PECVD in an atmosphere that contains silane and hydrogen at a ratio in a range from about 1:15 to about 1:40. Multiple field emission devices may be formed and included in a flat panel display for computer monitors telecommunications devices, and the like.
Abstract:
An electron source having a cathode and a permanent magnet having perforated channels extending between opposite poles of the magnet. Each channel forms electrons received from the cathode into an electron beam for guidance towards a target. The electron source has applications in a wide range of technologies, including display technology and printer technology.
Abstract:
A lateral-emitter field emission device has a thin-film emitter cathode 50 which has thickness of not more than several hundred angstroms and has an edge or tip 110 having a small radius of curvature. To form a novel display cell structure, a cathodoluminescent phosphor anode 60 is positioned below the plane of the thin-film lateral-emitter cathode 50, allowing a large portion of the phosphor anode's top surface to emit light in the desired direction. An anode contact layer contacts the phosphor anode 60 from below to form a buried anode contact 90 which does not interfere with light emission. The anode phosphor is precisely spaced apart from the cathode edge or tip and receives electrons emitted by field emission from the edge or tip of the lateral-emitter cathode, when a small bias voltage is applied. The device may be configured as a diode, triode, or tetrode, etc. having one or more control electrodes 140 and/or 170 positioned to allow control of current from the emitter to the phosphor anode by an electrical signal applied to the control electrode. In a particularly simple embodiment, a single control electrode 140 is positioned in a plane below the emitter edge or tip 110 and automatically aligned to that edge. The display cell structure may be repeated many times in an array, and the display cell structure of the invention lends itself to novel array structures which are also disclosed. A fabrication process is disclosed using subprocess steps S1-S19 similar to those of semiconductor integrated circuit fabrication to produce the novel display cell structures and their arrays. Various embodiments of the fabrication process allow the use of conductive or insulating substrates 20 and allow fabrication of devices having various functions and complexity.
Abstract:
A flat display is provided, which includes: a cathode plate including emitter electrode lines each having emitter tips provided in pixel areas, and gate electrode lines crossing the emitter electrode lines at the pixel areas; and an anode plate spaced a predetermined distance from the cathode plate in an opposed relation and having an anode conductive layer and fluorescent layers formed on the anode conductive layer in the respective pixel areas; the emitter electrode lines and the gate electrode lines each having transparent portions formed of a transparent conductive film at least in the pixel areas so that light emission from the fluorescent layers can be viewed through the transparent portions.
Abstract:
A field emitter array comprises a plurality of cathode electrodes and an anode electrode disposed opposite to the plurality of cathode electrodes. And the anode electrode is provided with a plurality of protrusions having a cap material disposed on the tip of each protrusion. A voltage below a designated value is applied between a gate electrode and the cathode electrodes, and electrons are released only from a cathode electrode with a low emission start voltage. When the electrons are emitted to the cap material provided on the protrusions, the cap material is sputtering-evaporated and is affixed to the cathode electrode. Then a cap is disposed on the each of the cathode electrodes. Then, the emission properties between each cathode electrode are consequently rendered uniform, thereby increasing the emission start voltage and maximum applied voltage of the overall field emitter array.
Abstract:
A cathode structure of an electron gun for a cathode ray tube includes: a substrate (51); cathode electrode layers (52) formed on the substrate (51) and spaced apart from each other at predetermined intervals; a plurality of metal tips (53); an insulating layer (54) formed on the cathode electrode layers (52) and the substrate (51) to isolate each of the metal tips (53) from each other; a gate electrode layer having a first gate electrode portion (56) having a gate through which the metal tips (53) are exposed and formed on top of the insulating layer (54), and a second gate electrode portion (57) extending horizontally from said first gate portion (56) and divided into several parts by a plurality of gaps (60) for reducing the capacitance between the cathode electrode layers (52) and the second gate electrode portion (57).
Abstract:
There is provided a cold cathode including a substrate, a plurality of electron emitting electrodes formed on the substrate, a first insulating layer formed on the substrate and formed with a plurality of first cavities in which the electron emitting electrodes are disposed, a gate electrode formed on the first insulating layer and formed with a plurality of first openings which are in communication with the first cavities, a second insulating layer formed on the gate electrode and formed with a plurality of second cavities which are in communication with the first openings, and a focusing electrode formed on the second insulating layer and formed with a plurality of second openings which are in communication with the second cavities. At least one of central axes of the second openings and central axes of the first openings is eccentric with central axes of the electron emitting electrodes. Eccentricity between at least one of the central axes of the second openings and the central axes of the first openings, and the central axes of the electron emitting electrodes is oriented outwardly, and a degree of the eccentricity is set greater at a location more remote from a centrally located electron emitting electrode.
Abstract:
A field emitter for producing an electron beam includes at least one cold cathode unit. Each of the cold cathode units includes an emitter cone having an emitter tip and a gate spaced apart from the emitter tip for extracting electrons from the emitter tip in a propagation direction upon application of a positive dc voltage on the gate with respect to the emitter tip. The gate forms a gate cavity for propagation of the extracted electrons therethrough. Each of the cold cathode units further includes at least one lens electrode disposed further in the propagation direction from the emitter tip than the gate, the at least one lens electrode forming at least one lens cavity for propagation of the extracted electrons therethrough. The at least one lens electrode is for focusing the extracted electrons in part of the gate cavity, part of the at least one lens cavity, and part of the region therebetween.
Abstract:
A cathodoluminescent field emission display device features an enhancement layer disposed over at least selected portions of an outer surface of an extraction grid of the device. The enhancement layer provides enhanced secondary electron emissions. The enhancement layer is preferably near mono-molecular film of an oxide of barium, beryllium, calcium, magnesium, strontium or aluminum.
Abstract:
A vacuum microdevice includes a first electrode, an insulating film, and a second electrode. The first electrode projects in a current radiation region on a substrate and has a sharp tip. The insulating film is formed on the surface of the first electrode except the tip of the first electrode. The second electrode is formed on the insulating film and has an electrode thickness which increases away from the tip of the first electrode.