AUTOMATIC GRID FINGER DETECTION
    62.
    发明申请

    公开(公告)号:US20250166964A1

    公开(公告)日:2025-05-22

    申请号:US18947905

    申请日:2024-11-14

    Applicant: FEI Company

    Abstract: Embodiments herein relate to sample support imaging and sample location identification at a sample support to be used for microscopy imaging. A system can comprise a memory that stores, and a processor that executes, computer executable components. The computer executable components can comprise a beam directing component that instructs a focused ion beam (FIB) device of a beam system to direct an ion beam at a sample support, and a field application component that affects secondary charged particles, emitted from the sample support due to the ion beam, by directing activation of a negative field from the beam system during application of the ion beam by the FIB device.

    Scanning charged-particle-beam microscopy with energy-dispersive x-ray spectroscopy

    公开(公告)号:US12094684B1

    公开(公告)日:2024-09-17

    申请号:US16532459

    申请日:2019-08-05

    Applicant: Mochii, Inc.

    Abstract: A compact charged-particle-beam microscope, weighing less than about 50 kg and having a size of less than about 1 m×1 m×1 m, is provided for imaging a sample. The microscope has a vacuum chamber to maintain a low-pressure environment, a stage to hold a sample in the vacuum chamber, a charged-particle beam source to generate a charged-particle beam, charged-particle beam optics to converge the charged-particle beam onto the sample, and one or more beam scanners to scan the charged-particle beam across the sample. A charged-particle detector is provided to detect charged-particle radiation emanating from the sample and generate a corresponding charged-particle-detection signal. At least one energy dispersive x-ray spectrometer (EDS) is provided to detect x-rays emanating from the sample and generate a corresponding x-ray-detection signal. A controller analyzes the charged-particle-detection signal and the x-ray-detection signal to generate an image of the sample and a histogram of x-ray energies for at least a portion of the sample.

    Cathodoluminescence focal scans to characterize 3D NAND CH profile

    公开(公告)号:US11713964B1

    公开(公告)日:2023-08-01

    申请号:US17574055

    申请日:2022-01-12

    CPC classification number: G01B15/04 H01J37/244 H01J37/28 H01J37/285

    Abstract: Disclosed herein is a system for profiling holes in non-opaque samples. The system includes: (i) an e-beam source configured to project an e-beam into an inspection hole in a sample, such that a wall of the inspection hole is struck and a localized electron cloud is produced; (ii) a light sensing infrastructure configured to sense cathodoluminescent light, generated by the electron cloud; and (iii) a computational module configured to analyze the measured signal to obtain the probed depth at which the wall was struck. A lateral offset, and/or orientation, of the e-beam is controllable, so as to allow generating localized electron clouds at each of a plurality of depths inside the inspection hole, and thereby obtain information at least about a two-dimensional geometry of the inspection hole.

    CATHODOLUMINESCENCE FOCAL SCANS TO CHARACTERIZE 3D NAND CH PROFILE

    公开(公告)号:US20230221112A1

    公开(公告)日:2023-07-13

    申请号:US17574055

    申请日:2022-01-12

    CPC classification number: G01B15/04 H01J37/28 H01J37/244 H01J37/285

    Abstract: Disclosed herein is a system for profiling holes in non-opaque samples. The system includes: (i) an e-beam source configured to project an e-beam into an inspection hole in a sample, such that a wall of the inspection hole is struck and a localized electron cloud is produced; (ii) a light sensing infrastructure configured to sense cathodoluminescent light, generated by the electron cloud; and (iii) a computational module configured to analyze the measured signal to obtain the probed depth at which the wall was struck. A lateral offset, and/or orientation, of the e-beam is controllable, so as to allow generating localized electron clouds at each of a plurality of depths inside the inspection hole, and thereby obtain information at least about a two-dimensional geometry of the inspection hole.

    ELECTRON BEAM APPLICATION APPARATUS AND INSPECTION METHOD

    公开(公告)号:US20230071801A1

    公开(公告)日:2023-03-09

    申请号:US17878113

    申请日:2022-08-01

    Abstract: An electron beam application apparatus includes: an optical system configured to irradiate a sample with excitation light; an electron optical system configured to project, onto a camera, a photoelectron image formed by photoelectrons emitted from the sample irradiated with the excitation light; and a control unit. The optical system includes a light source configured to generate the excitation light and a pattern forming unit. The excitation light forms an optical pattern on a surface of the sample when the pattern forming unit is turned on, and the excitation light is emitted to the sample without forming the optical pattern on the surface of the sample when the pattern forming unit is turned off. The control unit adjusts the electron optical system based on feature data of a bright and dark pattern formed by the optical pattern in the photoelectron image obtained by turning on the pattern forming unit.

    MULTI-COLUMN SCANNING ELECTRON MICROSCOPY SYSTEM

    公开(公告)号:US20210090844A1

    公开(公告)日:2021-03-25

    申请号:US17099476

    申请日:2020-11-16

    Abstract: A multi-column scanning electron microscopy (SEM) system includes a column assembly, where the column assembly includes a first substrate array assembly and at least a second substrate array assembly. The system also includes a source assembly, the source assembly including two or more illumination sources configured to generate two or more electron beams and two or more sets of a plurality of positioners configured to adjust a position of a particular illumination source of the two or more illumination sources in a plurality of directions. The system also includes a stage configured to secure a sample, where the column assembly directs at least a portion of the two or more electron beams onto a portion of the sample.

Patent Agency Ranking