Abstract:
A structure having dry-wiping off characteristic relative to dirt attached to a concave-convex shaped surface of the structure, and a method for producing the structure. A structure having a concave-convex shaped surface, fabricated from a composition containing at least one compound having in a molecule, one to ten polymerizable group(s) and a photopolymerization initiator, wherein the structure has a Martens hardness of 3 N/mm2 or more and 130 N/mm2 or less when the Martens hardness of the structure is measured under a condition under which a Martens hardness of a molten quartz is 4,100 N/mm2. The structure is produced by applying the composition onto a substrate; pressing a coating film on the substrate into a concave-convex shaped face of a mold; photocuring the coating film while it is pressed into the concave-convex shaped face of the mold; and peeling the cured film on the substrate from the mold.
Abstract translation:具有相对于附着于该结构体的凹凸形状的表面的污物具有干擦拭特性的结构体及其制造方法。 由含有至少一种分子中的化合物,1〜10个聚合性基团和光聚合引发剂的组合物制成的具有凹凸形状的结构体,其特征在于,所述结构体的马氏体硬度为3N / mm 2, 当在熔融石英的马氏体硬度为4100N / mm 2的条件下测量结构的马氏体硬度时,测得130N / mm2以下。 该结构通过将该组合物施加到基底上而制成; 将基板上的涂膜压入模具的凹凸面; 在将涂布膜压入模具的凹凸形状的表面的同时对涂膜进行光固化; 并从模具剥离基板上的固化膜。
Abstract:
The invention relates to a method for enhancing a metallic coating on a steel strip or steel plate, the coating being melted by heating to a temperature above the melting temperature of the material of the coating, the heating taking place by irradiation of the surface of the coating with electromagnetic radiation having a high power density over a limited irradiation time of not more than 10 μs, and the mandated irradiation time and the energy density introduced into the coating by the electromagnetic radiation being selected such that the coating melts completely over its entire thickness down to the boundary layer with the steel strip, thereby forming a thin alloy layer at the boundary layer between the coating and the steel strip. The invention further relates to a steel strip or steel plate having a metallic coating, more particularly a coating of tin, zinc or nickel, in which, at the boundary layer between the steel and the coating, an alloy layer which is thin—compared with the thickness of the coating—and at the same time is dense, and is composed of iron atoms and atoms of the coating material, is formed, the thickness of the alloy layer corresponding to an alloy-layer add-on of less than 0.3 g/m2.
Abstract:
A curing apparatus for thermally processing thin films on low-temperature substrates at high speeds is disclosed. The curing apparatus includes a strobe head, a strobe control module and a conveyor control module. The strobe control module controls the power, duration and repetition rate of a set of pulses generated by a flash lamp on the strobe head. The conveyor control module along with the strobe control module provide real-time synchronization between the repetition rate of the set of pulses and the speed at which the substrate is being moved under the strobe head, according to the speed information.
Abstract:
A method of treating a laser-activated thermoplastic substrate having a metal compound dispersed therein is described. The substrate is contacted with an aqueous composition comprising: (i) a thiol functional organic compound; (ii) an ethoxylated alcohol surfactant; and (iii) xanthan gum. By use of the treatment composition, when the substrate is subsequently laser-activated and plated by electroless plating, extraneous plating of the substrate is substantially eliminated.
Abstract:
The present disclosure relates to methods and systems for synthesis of bridged-hydropentacene, hydroanthracene and hydrotetracene from the precursor compounds pentacene derivatives, tetracene derivatives, and anthracene derivatives. The invention further relates to methods and systems for forming thin films for use in electrically conductive assemblies, such as semiconductors or photovoltaic devices.
Abstract:
A method of forming an article includes forming a silicon-containing layer on a silicon-containing region of a surface of a substrate of the article; forming a plurality of channels and ridges in the silicon-containing layer; and forming at least one outer layer overlying the surface of the silicon-containing region. The plurality of channels and ridges may be formed by adding silicon-containing material to the silicon-containing layer. The channels and ridges may be formed by subtracting material from the silicon-containing layer. The channels and ridges may be formed by forming channels or grooves in the silicon-containing region of the surface of the substrate prior to formation of the silicon-containing layer.
Abstract:
A method includes: providing a substrate having a plurality of chemically contrasted alignment features, and depositing a self-assembled material on at least a portion of the substrate, wherein the position and/or orientation of substantially spherical or cylindrical domains of the self-assembled material is directed by the alignment features, to form a nanostructure pattern, and wherein the period of the alignment features is between about 2 times and about 10 times the period of the spherical or cylindrical domains. An apparatus fabricated according to the method is also provided.
Abstract:
Method of ablating the surface of a substrate including providing a dry substrate and an electrolyte source, ablating the surface of the dry substrate to at least partially remove a native oxide layer, and immersing the ablated dry substrate in the electrolyte source, in which the dry substrate is ablated prior to being introduced into the electrolyte source. Also provided is a method of ablating the surface of a substrate that includes providing a dry substrate and an electrolyte, depositing a portion of the electrolyte on the substrate at a thickness of less than 10 microns and ablating the surface of the substrate with the electrolyte applied thereon. System for use in the ablation of the surface of a substrate are also provided.
Abstract:
A process for application of metal on a substrate surface comprises applying a mixture of a solvent, a polymerizable monomer, and a photoinitiator on a substrate surface, wherein the photoinitiator does not form two phases together with the monomer and the solvent, i.e. it forms an amorphous mixture without any crystals. The monomer is able to polymerize to a polymer comprising at least one carboxylic group. Thereafter the solvent is evaporated. Polymerization is induced by irradiating the applied dried mixture. Ions are applied and reduced to metal and thereafter further metal can be deposited. The method can be used in industrial processes, both 2D and 3D surfaces can be coated with metal. Materials sensitive to standard grafting chemicals and/or polymers containing halogen atoms can be coated.
Abstract:
High rate deposition methods comprise depositing a powder coating from a product flow. The product flow results from a chemical reaction within the flow. Some of the powder coatings consolidate under appropriate conditions into an optical coating. The substrate can have a first optical coating onto which the powder coating is placed. The resulting optical coating following consolidation can have a large index-of-refraction difference with the underlying first optical coating, high thickness and index-of-refraction uniformity across the substrate and high thickness and index-of-refraction uniformity between coatings formed on different substrates under equivalent conditions. In some embodiments, the deposition can result in a powder coating of at least about 100 nm in no more than about 30 minutes with a substrate having a surface area of at least about 25 square centimeters.