Abstract:
A combination of a focusing element, and a filtering element which naturally adjusts the cross-sectional area of a beam of electromagnetic radiation passed through the focusing element as a function of wavelength, optionally as an element of an ellipsometer or polarimeter system.
Abstract:
A photometric device for investigating a sample, comprises an array of radiation sources that are spaced apart from one another, and which are operable to generate radiation that differs from that generated by the other radiation sources in the array. The device includes a lens arrangement for focusing the radiation at a region of space where a sample may be located for example by means of a sample holder, and at least one detector for receiving radiation from the region of space. Preferably, a number of detectors are employed that are spaced apart from one another, and especially about an axis of the device, so that one radiation detector can detect radiation transmitted by the sample and the other detectors can detect radiation scattered by it. The radiation sources may be time division multiplexed so that in each time slot the detectors receive radiation originating from each radiation source. In an alternative embodiment, the radiation from the region of space may be transmitted to the sample via a beam homogeniser, for example an optical waveguide in the form of an optical fibre, which may be used to reduce or remove speckle where laser diodes are employed as the radiation sources. The device may be used to determine the particle size distribution of particles in a sample by a method employing Bayesian inference.
Abstract:
A hyperspectral imaging system, a monolithic Offner spectrometer, and two methods for manufacturing the monolithic Offner spectrometer are described herein. In one embodiment, the monolithic Offner spectrometer comprises a transmissive material which has: (1) an entrance surface which has an opaque material applied thereto, where the opaque material has a portion removed therefrom which forms a slit; (2) a first surface which has a first reflective coating applied thereto to form a first mirror; (3) a second surface which has a second reflective coating applied thereto to form a diffraction grating; (4) a third surface which has a third reflective coating applied thereto to form a second mirror; and (5) an exit surface.
Abstract:
An optical emission spectroscopic (OES) instrument includes a spectrometer, a processor and an adjustable mask controlled by the processor. The adjustable mask defines a portion of an analytical gap imaged by the spectrometer. The instrument automatically adjusts the size and position of an opening in the mask, so the spectrometer images an optimal portion of plasma formed in the analytical gap, thereby improving signal and noise characteristics of the instrument, without requiring tedious and time-consuming manual adjustment of the mask during manufacture or use.
Abstract:
Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Abstract:
An automated adaptive optics and laser projection system is described. The automated adaptive optics and laser projection system includes an adaptive optics system and a compact laser projection system with related laser guidance programming used to correct atmospheric distortion induced on light received by a telescope. Control of the automated adaptive optics and laser projection system is designed in a modular manner in order to facilitate replication of the system to be used with a variety of different telescopes. Related methods are also described.
Abstract:
The present invention enables snap-shot spectral imaging of a scene at high image generation rates. Light from the scene is processed through an optical system that comprises a coded-aperture. The optical system projects a plurality of images, each characterized by only one of a plurality of spectral components, onto a photodetector array. The plurality of images is interspersed on the photodetector array, but no photodetector receives light characterized by more than one of the plurality of spectral components. As a result, computation of the spatio-spectral datacube that describes the scene is simplified. The present invention, therefore, enables rapid spectral imaging of the scene.
Abstract:
A device and method for optically examining the interior of turbid media including acts of spatially separating a plurality of wavelength bands contained in a broad-band light; separately modulating the plurality of wavelength bands; recombining the plurality of modulated wavelength bands to a beam of spectrally encoded broad-band light; illuminating a turbid medium with the beam of spectrally encoded broad-band light; detecting light emanating from the turbid medium with a detector and demodulating the detected light with a demodulator to provide spectroscopic information.
Abstract:
The optical assemblies disclosed herein advantageously utilize a beamsplitting apparatus in association with (i) the illumination path or (ii) the collection path of a color measurement instrument. Thus, the beamsplitting apparatus may be configured to spectrally divide one or more initial beams of light to emit a plurality of resultant beams of light, wherein the optical assembly is configured to illuminate a target using at least a first and second of the plurality of resultant beams. Alternatively, the beamsplitting apparatus may be configured to spectrally divide light received from a target to emit a plurality of resultant beams of light, wherein the optical assembly is configured to detect at least a first and second of the plurality of resultant beams of light. Advantageously, each of the first and second resultant beams is a product of a distinct set of one or more spectral constraints exacted by the beamsplitting apparatus.
Abstract:
A particle detection and classification system is disclosed. The system determines the size of measured particles by measuring light scattered by the particles. The system simultaneously determines whether measured particles are biological or non-biological by measuring fluorescent light from the particles. The system uses a parabolic reflector, and optionally, a spherical reflector to collect fluorescence light.